Low Reynolds number turbulence in wall-bounded shear flows en route to laminar flow takes the form of oblique, spatially intermittent turbulent structures. In plane Couette flow, these emerge from uniform turbulence via a spatio-temporal intermittent process in which localised quasi-laminar gaps randomly nucleate and disappear. For slightly lower Reynolds numbers, spatially periodic and approximately stationary turbulent–laminar patterns predominate. The statistics of quasi-laminar regions, including the distributions of space and time scales and their Reynolds-number dependence, are analysed. A smooth, but marked transition is observed between uniform turbulence and flow with intermittent quasi-laminar gaps, whereas the transition from gaps to regular patterns is more gradual. Wavelength selection in these patterns is analysed via numerical simulations in oblique domains of various sizes. Via lifetime measurements in minimal domains, and a wavelet-based analysis of wavelength predominance in a large domain, we quantify the existence and nonlinear stability of a pattern as a function of wavelength and Reynolds number. We report that the preferred wavelength maximises the energy and dissipation of the large-scale flow along laminar–turbulent interfaces. This optimal behaviour is due primarily to the advective nature of the large-scale flow, with turbulent fluctuations playing only a secondary role.