Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context. Gas expulsion is a central concept in some of the models for multiple populations and the light-element anti-correlations in globular clusters. If the star formation efficiency was around 30 per cent and the gas expulsion happened on the crossing timescale, this process could preferentially expel stars born with the chemical composition of the proto-cluster gas, while stars with special composition born in the centre would remain bound. Recently, a sample of extragalactic, gas-free, young massive clusters has been identified that has the potential to test the conditions for gas expulsion. Aims. We investigate the conditions required for residual gas expulsion on the crossing timescale. We consider a standard initial mass function and different models for the energy production in the cluster: metallicity-dependent stellar winds, radiation, supernovae and more energetic events, such as hypernovae, which are related to gamma ray bursts. The latter may be more energetic than supernovae by up to two orders of magnitude. Methods. We computed a large number of thin-shell models for the gas dynamics, and calculated whether the Rayleigh-Taylor instability is able to disrupt the shell before it reaches the escape speed. Results. We show that the success of gas expulsion depends on the compactness index of a star cluster C 5 ≡ (M * /10 5 M )/(r h /pc), with initial stellar mass M * and half-mass radius r h . For given C 5 , a certain critical, local star formation efficiency is required to remove the rest of the gas. Common stellar feedback processes may not lead to gas expulsion with significant loss of stars above C 5 ≈ 1. Considering pulsar winds and hypernovae, the limit increases to C 5 ≈ 30. If successful, gas expulsion generally takes place on the crossing timescale. Some observed young massive clusters have 1 < C 5 < 10 and are gas-free at ≈10 Myr. This suggests that gas expulsion does not affect their stellar mass significantly, unless powerful pulsar winds and hypernovae are common in such objects. By comparison to observations, we show that C 5 is a better predictor for the expression of multiple populations than stellar mass. The best separation between star clusters with and without multiple populations is achieved by a stellar winds-based gas expulsion model, where gas expulsion would occur exclusively in star clusters without multiple populations. Single and multiple population clusters also have little overlap in metallicity and age. Conclusions. Globular clusters should initially have C 5 100, if the gas expulsion paradigm was correct. Early gas expulsion, which is suggested by the young massive cluster observations, hence would require special circumstances, and is excluded for several objects. Most likely, the stellar masses did not change significantly at the removal of the primordial gas. Instead, the predictive power of the C 5 index for the expression of multiple populations is consistent with the idea that gas expulsion may prevent the expression of multiple populations. On this bas...
Context. Gas expulsion is a central concept in some of the models for multiple populations and the light-element anti-correlations in globular clusters. If the star formation efficiency was around 30 per cent and the gas expulsion happened on the crossing timescale, this process could preferentially expel stars born with the chemical composition of the proto-cluster gas, while stars with special composition born in the centre would remain bound. Recently, a sample of extragalactic, gas-free, young massive clusters has been identified that has the potential to test the conditions for gas expulsion. Aims. We investigate the conditions required for residual gas expulsion on the crossing timescale. We consider a standard initial mass function and different models for the energy production in the cluster: metallicity-dependent stellar winds, radiation, supernovae and more energetic events, such as hypernovae, which are related to gamma ray bursts. The latter may be more energetic than supernovae by up to two orders of magnitude. Methods. We computed a large number of thin-shell models for the gas dynamics, and calculated whether the Rayleigh-Taylor instability is able to disrupt the shell before it reaches the escape speed. Results. We show that the success of gas expulsion depends on the compactness index of a star cluster C 5 ≡ (M * /10 5 M )/(r h /pc), with initial stellar mass M * and half-mass radius r h . For given C 5 , a certain critical, local star formation efficiency is required to remove the rest of the gas. Common stellar feedback processes may not lead to gas expulsion with significant loss of stars above C 5 ≈ 1. Considering pulsar winds and hypernovae, the limit increases to C 5 ≈ 30. If successful, gas expulsion generally takes place on the crossing timescale. Some observed young massive clusters have 1 < C 5 < 10 and are gas-free at ≈10 Myr. This suggests that gas expulsion does not affect their stellar mass significantly, unless powerful pulsar winds and hypernovae are common in such objects. By comparison to observations, we show that C 5 is a better predictor for the expression of multiple populations than stellar mass. The best separation between star clusters with and without multiple populations is achieved by a stellar winds-based gas expulsion model, where gas expulsion would occur exclusively in star clusters without multiple populations. Single and multiple population clusters also have little overlap in metallicity and age. Conclusions. Globular clusters should initially have C 5 100, if the gas expulsion paradigm was correct. Early gas expulsion, which is suggested by the young massive cluster observations, hence would require special circumstances, and is excluded for several objects. Most likely, the stellar masses did not change significantly at the removal of the primordial gas. Instead, the predictive power of the C 5 index for the expression of multiple populations is consistent with the idea that gas expulsion may prevent the expression of multiple populations. On this bas...
This is a "biased" review because I will show recent evidence on the contribution of globular clusters (GCs) to the halo of our Galaxy seen through the lens of the new paradigm of multiple populations in GCs. I will show a few examples where the chemistry of multiple populations helps to answer hot questions including whether and how much GCs did contribute to the halo population, if we have evidence of the GCs-halo link, what are the strengths and weak points concerning this contribution.
A number of scenarios have been put forward to explain the origin of the chemical anomalies (and resulting complex colour-magnitude diagrams) observed in globular clusters (GCs), namely the AGB, Fast Rotating Massive Star, Very Massive Star, and Early Disc Accretion scenarios. We compare the predictions of these scenarios with a range of observations (including young massive clusters (YMCs), chemical patterns, and GC population properties) and find that all models are inconsistent with observations. In particular, YMCs do not show evidence for multiple epochs of star-formation and appear to be gas free by an age of ~ 3 Myr. Also, the chemical patterns displayed in GCs vary from one to the next in such a way that cannot be reproduced by standard nucleosynthetic yields. Finally, we show that the “mass budget problem” for the scenarios cannot be solved by invoking heavy cluster mass loss (i.e. that clusters were 10-100 times more massive at birth) as this solution makes basic predictions about the GC population that are inconsistent with observations. We conclude that none of the proposed scenarios can explain the multiple population phenomenon, hence alternative theories are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.