MicroRNAs (miRNAs) are a type of small non-coding RNA that negatively regulate gene expression levels by binding to the 3′-untranslated region of specific target mRNAs. To investigate the role of miR-27a in esophageal squamous cell carcinoma (ESCC), TargetScan software was used to predict the target gene of miR-27a. Kirsten rat sarcoma viral oncogene homolog (KRAS), which has been implicated as a regulator of cell proliferation, differentiation and transformation, was identified as a potential target gene of miR-27a and, thus, was the focus of the present study. Luciferase activity in cells transfected with miR-27a mimics was 48% lower when compared with that of the miRNA-negative control. Furthermore, expression levels of the K-ras protein were reduced by ≤50% in cells cotransfected with an expression vector containing miR-27a and miR-27a binding sequences, when compared with the control. The expression level of miR-27a was significantly lower in ESCC cell lines and tissues when compared with healthy esophageal epithelial cells and tissues. However, the expression level of the target gene, KRAS was upregulated and ESCC cell proliferation was significantly inhibited following miR-27a mimic or small interfering K-ras transfection. In conclusion, the present study demonstrated that the expression level of miR-27a was low in ESCC and that miR-27a directly targets the KRAS gene, resulting in inhibited cell proliferation in esophageal cancer.