Recent advances in technology have enabled the development of instrumented equipment, which estimate the head impact kinematics of athletes in vivo. One such headband-mounted impact sensor is the SIM-G (Triax Technologies, Norwalk, CT, USA), which has been previously used to investigate the biomechanics of soccer heading by human subjects. Previous studies have evaluated the accuracy of the SIM-G for pure rotation and pendulum, impulse hammer and drop rig impacts. The current study used a soccer ball heading model to evaluate the accuracy of the SIM-G. A soccer ball was projected at the head of an anthropomorphic test device (ATD) representing a 10-year-old to replicate the heading maneuver at various impact sites, angles and speeds previously identified in youth soccer. Linear regression revealed that the SIM-G sensor overestimated the peak angular velocity and linear acceleration recorded by the ATD headform by approximately 44% and 105%, respectively. Tests in which the ball directly contacted the SIM-G sensor resulted in the largest peak linear accelerations. Glancing impacts were significantly associated with a decrease in percentage error of the SIM-G sensor peak angular velocity data relative to the ATD reference data. While it may not demonstrate accuracy in estimating the magnitudes of head impacts, the SIM-G remains a useful tool to provide estimates of head impact exposure for soccer players.