2012
DOI: 10.4172/2155-9872.1000e105
|View full text |Cite
|
Sign up to set email alerts
|

Dual-Targeting of Tumor Cells and Tumor Neovasculature by Tissue Factor- Targeted Photodynamic Therapy

Abstract: FootnoteThis editorial was an extended abstract of an invited special lecture presented at

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2014
2014
2014
2014

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 21 publications
(34 reference statements)
0
1
0
Order By: Relevance
“…To achieve improved tumor selectivity and to reduce side effects in the treatment of cancer, the concept of targeted photodynamic therapy has been successfully developed by attaching specific functionalities to the photosensitizer, such as antibodies recognizing tumor antigens [26,27], or ligands and peptides to recognize receptors [28], which could be selectively expressed on one of the two major tumor compartments, either on the malignant cells or on tumor neovasculature. To achieve better efficacy than PDT that is targeted to a single tumor compartment (stPDT), a recent editorial [29] in this Journal summarized a new PDT approach (Figure 1), which was designed for dual targeting of photosensitizers (dtPDT) to both malignant cells and neovasculature [30,31] by conjugating photosensitizers to a protein, factor VII, the natural ligand for tissue factor. This approach allows for dual targeting of malignant cells and of tumor neovasculature, both of which either overexpress or selectively express tissue factor [30][31][32][33], respectively.…”
mentioning
confidence: 99%
“…To achieve improved tumor selectivity and to reduce side effects in the treatment of cancer, the concept of targeted photodynamic therapy has been successfully developed by attaching specific functionalities to the photosensitizer, such as antibodies recognizing tumor antigens [26,27], or ligands and peptides to recognize receptors [28], which could be selectively expressed on one of the two major tumor compartments, either on the malignant cells or on tumor neovasculature. To achieve better efficacy than PDT that is targeted to a single tumor compartment (stPDT), a recent editorial [29] in this Journal summarized a new PDT approach (Figure 1), which was designed for dual targeting of photosensitizers (dtPDT) to both malignant cells and neovasculature [30,31] by conjugating photosensitizers to a protein, factor VII, the natural ligand for tissue factor. This approach allows for dual targeting of malignant cells and of tumor neovasculature, both of which either overexpress or selectively express tissue factor [30][31][32][33], respectively.…”
mentioning
confidence: 99%