2022
DOI: 10.3390/ma15113875
|View full text |Cite
|
Sign up to set email alerts
|

Dual-Scale Porosity Alumina Structures Using Ceramic/Camphene Suspensions Containing Polymer Microspheres

Abstract: This study demonstrates the utility of thermo-regulated phase separable alumina/camphene suspensions containing poly(methyl methacrylate) (PMMA) microspheres as porogens for the production of multi-scale porosity structures. The homogeneous suspension prepared at 60 °C could undergo phase separation during freezing at room temperature. This process resulted in the 3D networks of camphene crystals and alumina walls containing PMMA microspheres. As a consequence, relatively large dendritic pores with several ten… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 51 publications
0
1
0
Order By: Relevance
“…Poly(methyl methacrylate) (PMMA) is frequently used because of its lowtemperature burn-out, low ash content, and biocompatibility. [24][25][26] Porous materials achieved using PMMA with the sacrificial templating method have yielded a wide range of nanoscale pores, finding applications in catalyst materials, [27][28][29][30][31][32][33] films, [34,35] membranes, [36,37] oxides, [38][39][40] carbon-based structures, [41][42][43][44] bioactive glass, [45] electrode materials, [46,47] and scaffolds and foams. [48,49] In addition, microscale pores have been successfully fabricated using packed PMMA beads (5-800 μm) as pore-forming agents, resulting in porosities ranging from 7% to 80%.…”
Section: Introductionmentioning
confidence: 99%
“…Poly(methyl methacrylate) (PMMA) is frequently used because of its lowtemperature burn-out, low ash content, and biocompatibility. [24][25][26] Porous materials achieved using PMMA with the sacrificial templating method have yielded a wide range of nanoscale pores, finding applications in catalyst materials, [27][28][29][30][31][32][33] films, [34,35] membranes, [36,37] oxides, [38][39][40] carbon-based structures, [41][42][43][44] bioactive glass, [45] electrode materials, [46,47] and scaffolds and foams. [48,49] In addition, microscale pores have been successfully fabricated using packed PMMA beads (5-800 μm) as pore-forming agents, resulting in porosities ranging from 7% to 80%.…”
Section: Introductionmentioning
confidence: 99%