a b s t r a c tA study is reported of the potential performance of dry cooling on power generation. This is done in the context of a generic trough solar thermal power plant. The commercial power plant analysis code GateCycle is applied for this purpose. This code is used to estimate typical performance of both wet and dry cooling options. Then it is configured to estimate the performance of ideal wet and dry cooling options. The latter are defined as the condenser temperature being at the ambient wet bulb temperature or dry bulb temperature, respectively. Yearly power production of a solar power plant located in Las Vegas is presented for each of the cooling options. To move further toward approaching the possible improvement in dry cooling, the impact of a high-performance heat exchanger surface is evaluated. It is found that higher efficiency generation compared to current dry cooling designs is definitely possible. In fact the performance of these types of systems can approach that of wet cooling system units.