2024
DOI: 10.3390/w16182656
|View full text |Cite
|
Sign up to set email alerts
|

Drought Quantification in Africa Using Remote Sensing, Gaussian Kernel, and Machine Learning

Fred Sseguya,
Kyung-Soo Jun

Abstract: Effective drought management requires precise measurement, but this is challenging due to the variety of drought indices and indicators, each with unique methods and specific uses, and limited ground data availability. This study utilizes remote sensing data from 2001 to 2020 to compute drought indices categorized as meteorological, agricultural, and hydrological. A Gaussian kernel convolves these indices into a denoised, multi-band composite image. Further refinement with a Gaussian kernel enhances a single d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 84 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?