The concentrations of polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soil samples collected around an industrial park in Northwest China, to investigate the potential impacts of park emissions on the surrounding environment. The total concentration ranges of PCBs, PCNs, and PCDD/Fs in the soil samples were in 13.2–1240, 141–832, and 3.60–156 pg/g, respectively. The spatial distribution and congener patterns of PCBs, PCNs, and PCCD/Fs indicated that there might be multiple contamination sources in the study area, so source apportionments of PCBs, PCNs, and PCCD/Fs were performed by a positive matrix factorization model based on the concentrations of all target congeners together. The results revealed that these highly chlorinated congeners (CB-209, CN-75, and OCDF) might be derived from phthalocyanine pigments, the legacy of Halowax 1051 and 2,4-D products, which together contributed nearly half of the total concentration of target compounds (44.5%). In addition to highly chlorinated congeners, the local industrial thermal processes were mainly responsible for the contamination of PCBs, PCNs, and PCDD/Fs in the surrounding soil. The total carcinogenic risk of PCBs, PCNs, and PCDD/Fs in a few soil samples (0.22 × 10−6, 0.32 × 10−6, and 0.40 × 10−6) approached the threshold of potential carcinogenic risk (1.0 × 10−6). Since these pollutants can continuously accumulate in the soil, the contamination of PCBs, PCNs, and PCDD/Fs in surrounding soil deserves continuous attention.