Abstract. This paper presents a segmentation method, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique, for documents having both text and graphics regions. It assumes that the text and non-text regions of a given document are considered to have different textural properties. The M -band wavelet packet is used to extract the scale-space features, which is able to zoom it onto narrow band high frequency components of a signal. A scale-space feature vector is thus derived, taken at different scales for each pixel in an image. Finally, the rough-fuzzy-possibilistic c-means algorithm is used to address the uncertainty problem of document segmentation. The performance of the proposed technique, along with a comparison with related approaches, is demonstrated on a set of real life document images.