Salt-inducible kinases
(SIKs) are calcium/calmodulin-dependent
protein kinase (CAMK)-like (CAMKL) family members implicated in insulin
signal transduction, metabolic regulation, inflammatory response,
and other processes. Here, we focused on SIK2, which is a target of
the Food and Drug Administration (FDA)-approved pan inhibitor
N
-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide
(dasatinib), and constructed four representative SIK2 structures by
homology modeling. We investigated the interactions between dasatinib
and SIK2 via molecular docking, molecular dynamics simulation, and
binding free energy calculation and found that dasatinib showed strong
binding affinity for SIK2. Binding free energy calculations suggested
that the modification of various dasatinib regions may provide useful
information for drug design and to guide the discovery of novel dasatinib-based
SIK2 inhibitors.