The effects of chronic cocaine administration on neurotensin (NT) mRNA expression were investigated in the rat brain using in situ hybridization. Adult Wistar rats were injected daily with cocaine (15 mg/kg i.p.) or saline for 10 days. One hour after the last injection, the brains were removed and coronal sections of the nucleus accumbens and striatum processed for in situ hybridization using a 35 S-labeled NT mRNA oligonucleotide probe. Repeated administration of cocaine induced a specific increase in the expression of NT mRNA in the shell of the nucleus accumbens whereas no changes were observed in the core compartment. In addition, cocaine enhanced the expression of the NT gene in neurons confined to the posterior dorsomedial striatum, but did not alter this same region in the anterior striatum. A strong increase in NT mRNA expression was also observed in rats treated with cocaine in the ventrolateral region of the striatum, the fundus striati. No modifications were seen in the dorsolateral or ventromedial striatum, the lateral septum, or the olfactory tubercle. These findings demonstrate that cocaine affects NT mRNA expression in discrete populations of neurons confined to the shell of the nucleus accumbens and dorsomedial and ventrolateral striatum of the rat. The shell of the nucleus accumbens is a limbic area considered the locus of the reinforcing and locomotor activating properties of cocaine while the dorsal striatum is implicated in the regulation of motor output, and appears to be involved in the stereotypies induced by cocaine. The specific increases in NT gene expression induced by chronic cocaine suggest that these changes could be physiologically relevant for the behavioral effects of psychostimulant drugs.