2018
DOI: 10.1142/s0218127418300276
|View full text |Cite
|
Sign up to set email alerts
|

Dissipative Solitons and Metastable States in a Chain of Active Particles

Abstract: The dynamics of a chain of interacting active particles of Rayleigh-type is studied. Particles are interconnected via Morse potential forces. The steady-state modes (attractors) of the chain with periodic boundary conditions look like cnoidal waves with a uniform distribution of the particles’ density maxima along the chain. However, if the system starts from random initial conditions, a metastable state with nonuniform distribution of density maxima is formed. Characteristics of metastable states, excitation … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
6
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 29 publications
0
6
0
1
Order By: Relevance
“…Emergent wave propagation in fluid-based, many-body systems, both passive and active, is an area of burgeoning interest, having been observed in a wide range of settings including bacterial suspensions [1][2][3][4]; colloidal fluids composed of synthetic microrollers and spinners [5][6][7]; and crystals of driven microfluidic water droplets [8][9][10][11]. Elsewhere, theoretical models of one-dimensional driven-dissipative lattices exhibit instabilities in the form of solitary waves, as well as unidirectional motion and out-of-phase (optical) oscillations [12][13][14][15][16][17][18], prompting experimental realizations in the form of active electronic circuits [19][20][21][22][23]. We here introduce a robust, mechanical analog of an active nonlinear lattice, comprised of quasi-one-dimensional assemblies of self-propelled fluid droplets.…”
Section: Introductionmentioning
confidence: 99%
“…Emergent wave propagation in fluid-based, many-body systems, both passive and active, is an area of burgeoning interest, having been observed in a wide range of settings including bacterial suspensions [1][2][3][4]; colloidal fluids composed of synthetic microrollers and spinners [5][6][7]; and crystals of driven microfluidic water droplets [8][9][10][11]. Elsewhere, theoretical models of one-dimensional driven-dissipative lattices exhibit instabilities in the form of solitary waves, as well as unidirectional motion and out-of-phase (optical) oscillations [12][13][14][15][16][17][18], prompting experimental realizations in the form of active electronic circuits [19][20][21][22][23]. We here introduce a robust, mechanical analog of an active nonlinear lattice, comprised of quasi-one-dimensional assemblies of self-propelled fluid droplets.…”
Section: Introductionmentioning
confidence: 99%
“…Examples include the complex flows arising from active stresses exerted by bacteria suspended in fluid [3,4]; vortex generation and nonlinear wave propagation in colloidal fluids [58]; phonon-like excitations in passively driven crystals of particles and droplets confined to microfluidic channels [913]; and emergent magnetic order in hydrodynamic spin lattices of walking dropets [14,15]. In non-fluidic systems, theoretical models of active nonlinear lattices are shown to exhibit instabilities in the form of out-of-phase oscillations and solitary waves [16–20], prompting experimental analogues in the form of active electronic circuits [21–24].…”
Section: Introductionmentioning
confidence: 99%
“…particles and droplets confined to microfluidic channels [9][10][11][12][13]; and emergent magnetic order in hydrodynamic spin lattices of walking dropets [14,15]. In non-fluidic systems, theoretical models of active nonlinear lattices are shown to exhibit instabilities in the form of out-of-phase oscillations and solitary waves [16][17][18][19][20], prompting experimental analogues in the form of active electronic circuits [21][22][23][24].…”
Section: Introductionmentioning
confidence: 99%
“…Особый интерес представляет динамика упорядоченных систем взаимодействующих частиц, которые могут быть как консервативными [1,2], так и активными [3][4][5], и ансамблей связанных осцилляторов [6][7][8][9]. Варьированием параметров элементов и связей модели, описывающей упорядоченный ансамбль осцилляторов, можно получать в асимптотике известные модели цепочки консервативных частиц (Тоды, Морзе, Леннарда−Джонса, Ферми−Паста−Улама) и цепочки активных частиц (например, Рэлея-Морзе [10,11]), а также цепочки консервативных осцилляторов [7] и цепочки активных осцилляторов [6,8]. В настоящей работе исследуется поведение цепочек активных частиц и активных осцилляторов, которые переходят друг в друга при стремлении частоты осцилляторов к нулю.…”
unclassified