Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Concrete-filled steel tube (CFST) columns are widely used in civil engineering because of their excellent bearing capacity; however, the reinforcement of CFST columns lacks effective measures. To strengthen CFST columns quickly and effectively, two methods, namely, winding FRP (fiber reinforced polymer) or steel strips, were explored in this work. Two unconfined CFST columns, eight FRP-strengthened CFST columns and four welded steel strip-strengthened CFST columns were manufactured and tested. The failure modes and axial load–strain curves of all specimens under compression load were concluded and compared. The effects of the primary parameters, such as FRP layers (1, 2, 3 and 4 layers) and steel strip thickness (3.0 and 6.0 mm), on the bearing capacity and deformation capacity were also investigated. The ultimate load of CFST columns increased from 28.72 to 64.16% after being confined by FRP with one to four layers. The ultimate load of the welded steel strip-strengthened CFST column with 3.0 mm steel strips and 6.0 mm steel strips increased by 28.46% and 49.82%, respectively, compared with the unconfined CFST column. Thus, the increase in FRP layers and steel strip thickness can markedly improve the compressive behavior of the FRP/welded steel strip-strengthened CFST columns. The cost performance of the two different reinforcement methods also showed that the cost of the welded steel strip-strengthened CFST column is nearly 40% of that of the FRP-strengthened CFST column when the same strengthening effect was obtained, which indicated that the welded steel strip-strengthened CFST column is more cost-efficient than CFST columns confined by FRP. Finally, six existing models for the ultimate load of FRP-strengthened CFST columns were presented and evaluated. From the evaluation results, the Zhang et al.’s model, Lu et al.’s model and Hu et al.’s model for FRP-strengthened CFST columns were shown to provide the best applicability and accuracy. Based on the Mander et al.’s model, a model for the ultimate load of welded steel strip-strengthened CFST columns was proposed and evaluated. The proposed model can accurately predict the ultimate load of welded steel strip-strengthened CFST columns.
Concrete-filled steel tube (CFST) columns are widely used in civil engineering because of their excellent bearing capacity; however, the reinforcement of CFST columns lacks effective measures. To strengthen CFST columns quickly and effectively, two methods, namely, winding FRP (fiber reinforced polymer) or steel strips, were explored in this work. Two unconfined CFST columns, eight FRP-strengthened CFST columns and four welded steel strip-strengthened CFST columns were manufactured and tested. The failure modes and axial load–strain curves of all specimens under compression load were concluded and compared. The effects of the primary parameters, such as FRP layers (1, 2, 3 and 4 layers) and steel strip thickness (3.0 and 6.0 mm), on the bearing capacity and deformation capacity were also investigated. The ultimate load of CFST columns increased from 28.72 to 64.16% after being confined by FRP with one to four layers. The ultimate load of the welded steel strip-strengthened CFST column with 3.0 mm steel strips and 6.0 mm steel strips increased by 28.46% and 49.82%, respectively, compared with the unconfined CFST column. Thus, the increase in FRP layers and steel strip thickness can markedly improve the compressive behavior of the FRP/welded steel strip-strengthened CFST columns. The cost performance of the two different reinforcement methods also showed that the cost of the welded steel strip-strengthened CFST column is nearly 40% of that of the FRP-strengthened CFST column when the same strengthening effect was obtained, which indicated that the welded steel strip-strengthened CFST column is more cost-efficient than CFST columns confined by FRP. Finally, six existing models for the ultimate load of FRP-strengthened CFST columns were presented and evaluated. From the evaluation results, the Zhang et al.’s model, Lu et al.’s model and Hu et al.’s model for FRP-strengthened CFST columns were shown to provide the best applicability and accuracy. Based on the Mander et al.’s model, a model for the ultimate load of welded steel strip-strengthened CFST columns was proposed and evaluated. The proposed model can accurately predict the ultimate load of welded steel strip-strengthened CFST columns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.