2014
DOI: 10.1103/physrevb.90.245439
|View full text |Cite
|
Sign up to set email alerts
|

Direct band gap silicon quantum dots achieved via electronegative capping

Abstract: Direct bandgap silicon quantum dots achieved via electronegative capping Poddubny, A.N.; Newell, K. General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (priva… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

5
54
2
2

Year Published

2015
2015
2022
2022

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 53 publications
(63 citation statements)
references
References 47 publications
5
54
2
2
Order By: Relevance
“…Tensile strain then cooperates with quantum confinement by shifting both the points in the same direction, ultimately leading the fundamental bandgap cross‐over . The second explanation of direct‐bandgap luminescence transition then lies in the electronegativity of the C‐linked surface . The direct transitions are a direct consequence of the surface capping, since the replacement of oxide surface with organic capping leads to fast PL and vice versa .…”
Section: Luminescencementioning
confidence: 99%
See 1 more Smart Citation
“…Tensile strain then cooperates with quantum confinement by shifting both the points in the same direction, ultimately leading the fundamental bandgap cross‐over . The second explanation of direct‐bandgap luminescence transition then lies in the electronegativity of the C‐linked surface . The direct transitions are a direct consequence of the surface capping, since the replacement of oxide surface with organic capping leads to fast PL and vice versa .…”
Section: Luminescencementioning
confidence: 99%
“…[42] The second explanation of direct-bandgap luminescence transition then lies in the electronegativity of the Clinked surface. [45] The direct transitions are a direct consequence of the surface capping, since the replacement of oxide surface with organic capping leads to fast PL [46] and vice versa. [41] The fundamental direct transitions in Figure 3 are a major leap forward, because they put the R rad of these NC on a par with other direct-bandgap materials.…”
Section: Organically Capped Si Ncsmentioning
confidence: 99%
“…Строгий расчeт электрон-ных состояний таких нанокристаллов методом сильной связи невозможен, так как этот подход не позволя-ет учесть перестройку химических связей. Однако в работах А.Н Поддубного c соавторами [39,67,68] на основе метода сильной связи были получены качествен-ные результаты, показывающие возможность управления оптическими свойствами кремниевых нанокристаллов. В работах [39,67] кремниевый нанокристалл, покрытый радикалами CH 3 −CH 3 −, моделировался как нанокри-сталл, покрытый одним слоем углерода.…”
Section: кремниевые нанокристаллы покрытые органическими радикаламиunclassified
“…В ходе дальнейшего исследова-ния была выдвинута следующая идея: переключение ха-рактера запрещенной энергетической щели кремниевых квантовых точек в состояние с прямыми оптическими переходами определяется просто тем, что радикалы CH 3 −CH 3 − являются электроотрицательными и это вызываeт перетекание электронной плотности к границе нанокристалла. Эта идея была развита в работе [68], где были представлены результаты моделирования, по-казывающие возможность переключения при пассиви-…”
Section: кремниевые нанокристаллы покрытые органическими радикаламиunclassified
“…The use of SiNCs instead of the bulk form of silicon, however, can alleviate the problem of poor light emission only partly, because SiNCs preserve the indirect nature of the bandgap 1,2 , and the light-emission rate thus remains low, on the order of 10 4 s 21 or less 3 . However, when passivated by a "suitable" organic material, SiNCs can have fast macroscopic radiative lifetime [4][5][6][7] and can actually be transformed into a direct-bandgap material 5,[8][9][10] . In particular, we have recently shown both theoretically and experimentally that properly capped SiNCs can be strain-engineered into a material with fundamental direct C 15 -C 25 ' bandgap 5 and the corresponding fast electron-hole radiative recombination rate of 10 8 s 21 (see also Figure 1a and the section on "Results overview").…”
Section: Introductionmentioning
confidence: 99%