2006
DOI: 10.1242/dev.02507
|View full text |Cite
|
Sign up to set email alerts
|

DIG-1, a novel giant protein, non-autonomously mediates maintenance of nervous system architecture

Abstract: Dedicated mechanisms exist to maintain the architecture of an animal's nervous system after development is completed. To date, three immunoglobulin superfamily members have been implicated in this process in the nematode Caenorhabditis elegans: the secreted two-Ig domain protein ZIG-4, the FGF receptor EGL-15 and the L1-like SAX-7 protein. These proteins provide crucial information for neuronal structures, such as axons, that allows them to maintain the precise position they acquired during development. Yet, h… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

6
66
0

Year Published

2009
2009
2016
2016

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 33 publications
(72 citation statements)
references
References 28 publications
(50 reference statements)
6
66
0
Order By: Relevance
“…The locations of neuronal soma, axons, and dendrites must be maintained to ensure proper nervous system function during the addition and removal of neurons and synapses and in response to mechanical stresses associated with body growth and movement. The factors maintaining nervous system architecture are often distinct from those involved in its establishment during development, a division of labor which likely allows flexibility to cope with the stresses involved in remodeling, growth, and movement.The involvement of extracellular matrix components, cell adhesion molecules, and cytoskeletal proteins in previously reported neural maintenance activities demonstrate that adhesive cell-matrix and possibly cell-cell interactions play a critical role (Aurelio et al 2002;Bulow et al 2004;Sasakura et al 2005;Wang et al 2005;Benard et al 2006Burket et al 2006;Pocock et al 2008;Woo et al 2008; Zhou et al 2008). Although previously unreported, factors controlling nuclear position in neurons may also be predicted to play key roles in positional maintenance of neuronal soma.…”
mentioning
confidence: 97%
See 4 more Smart Citations
“…The locations of neuronal soma, axons, and dendrites must be maintained to ensure proper nervous system function during the addition and removal of neurons and synapses and in response to mechanical stresses associated with body growth and movement. The factors maintaining nervous system architecture are often distinct from those involved in its establishment during development, a division of labor which likely allows flexibility to cope with the stresses involved in remodeling, growth, and movement.The involvement of extracellular matrix components, cell adhesion molecules, and cytoskeletal proteins in previously reported neural maintenance activities demonstrate that adhesive cell-matrix and possibly cell-cell interactions play a critical role (Aurelio et al 2002;Bulow et al 2004;Sasakura et al 2005;Wang et al 2005;Benard et al 2006Burket et al 2006;Pocock et al 2008;Woo et al 2008; Zhou et al 2008). Although previously unreported, factors controlling nuclear position in neurons may also be predicted to play key roles in positional maintenance of neuronal soma.…”
mentioning
confidence: 97%
“…The involvement of extracellular matrix components, cell adhesion molecules, and cytoskeletal proteins in previously reported neural maintenance activities demonstrate that adhesive cell-matrix and possibly cell-cell interactions play a critical role (Aurelio et al 2002;Bulow et al 2004;Sasakura et al 2005;Wang et al 2005;Benard et al 2006Burket et al 2006;Pocock et al 2008;Woo et al 2008; Zhou et al 2008). Although previously unreported, factors controlling nuclear position in neurons may also be predicted to play key roles in positional maintenance of neuronal soma.…”
mentioning
confidence: 97%
See 3 more Smart Citations