2017
DOI: 10.1002/2017ja024452
|View full text |Cite
|
Sign up to set email alerts
|

Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region

Abstract: We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
6
1
1

Relationship

5
3

Authors

Journals

citations
Cited by 16 publications
(12 citation statements)
references
References 83 publications
(123 reference statements)
0
12
0
Order By: Relevance
“…With a full Fokker‐Planck code, one can solve today simultaneously the following processes: radial diffusion, pitch angle diffusion, energy diffusion, cross energy and pitch angle diffusion, Coulomb collision, and anomalous diffusion. Among the most well‐established Fokker‐Planck codes are the ONERA Salammbô code (e.g., Beutier & Boscher, ; Bourdarie et al, , , ; Pugacheva et al, ; Beutier et al, 2005; Varotsou et al, , ; Maget et al, ; Herrera et al, ), the British Antarctic Survey (BAS) Radiation Belt Code (e.g., Glauert et al, , ; Glauert & Horne, ; Horne et al, ; Meredith et al, , ), the VERB 3‐D code (e.g., Subbotin & Shprits, ; Shprits et al, ; Subbotin et al, , ; Kim et al, 2011, Kim et al, ; Drozdov et al, ) recently extended to a 4‐D version (e.g., Aseev et al, ; Shprits et al, ) to soon incorporate models of nonlinear wave‐particle interactions, the University of California, Los Angeles (UCLA) 3‐D diffusion code (e.g., Tao et al, ; Li et al, ; Li, Ma, et al, ; Ma et al, , , , Ma et al, that incorporates the (UCLA) Full Diffusion Code (e.g., Ni et al, 2008, Ni et al, ; Shprits & Ni, 2009) in order to compute diffusion coefficients (similarly to VERB 3‐D/4‐D), the radiation belt code of the Space Vehicles Directorate of the U.S. Air Force Research Laboratory (AFRL) (e.g., Albert, , ; Albert et al, ; Albert & Young, ; Selesnick, Albert, & Starks, ), the LANL Dynamic Radiation Environment Assimilation Model (DREAM) 1‐D (e.g., Tu et al, 2009; Reeves et al, ; Welling et al, ) and 3‐D codes (Camporeale et al, , ; Cunningham, ; Cunningham et al, ; Tu et al, ), the Commissariat à l'Energie Atomique (CEA) CEVA code (Réveillé, ; Ripoll & Mourenas, 2012; Ripoll, Chen, et al, , Ripoll, Reeves, et al, , Ripoll et al, , ), and the STEERB code developed in China (e.g., Su et al, …”
Section: New Radiation Belt Modeling Capabilities and The Quantificatmentioning
confidence: 99%
“…With a full Fokker‐Planck code, one can solve today simultaneously the following processes: radial diffusion, pitch angle diffusion, energy diffusion, cross energy and pitch angle diffusion, Coulomb collision, and anomalous diffusion. Among the most well‐established Fokker‐Planck codes are the ONERA Salammbô code (e.g., Beutier & Boscher, ; Bourdarie et al, , , ; Pugacheva et al, ; Beutier et al, 2005; Varotsou et al, , ; Maget et al, ; Herrera et al, ), the British Antarctic Survey (BAS) Radiation Belt Code (e.g., Glauert et al, , ; Glauert & Horne, ; Horne et al, ; Meredith et al, , ), the VERB 3‐D code (e.g., Subbotin & Shprits, ; Shprits et al, ; Subbotin et al, , ; Kim et al, 2011, Kim et al, ; Drozdov et al, ) recently extended to a 4‐D version (e.g., Aseev et al, ; Shprits et al, ) to soon incorporate models of nonlinear wave‐particle interactions, the University of California, Los Angeles (UCLA) 3‐D diffusion code (e.g., Tao et al, ; Li et al, ; Li, Ma, et al, ; Ma et al, , , , Ma et al, that incorporates the (UCLA) Full Diffusion Code (e.g., Ni et al, 2008, Ni et al, ; Shprits & Ni, 2009) in order to compute diffusion coefficients (similarly to VERB 3‐D/4‐D), the radiation belt code of the Space Vehicles Directorate of the U.S. Air Force Research Laboratory (AFRL) (e.g., Albert, , ; Albert et al, ; Albert & Young, ; Selesnick, Albert, & Starks, ), the LANL Dynamic Radiation Environment Assimilation Model (DREAM) 1‐D (e.g., Tu et al, 2009; Reeves et al, ; Welling et al, ) and 3‐D codes (Camporeale et al, , ; Cunningham, ; Cunningham et al, ; Tu et al, ), the Commissariat à l'Energie Atomique (CEA) CEVA code (Réveillé, ; Ripoll & Mourenas, 2012; Ripoll, Chen, et al, , Ripoll, Reeves, et al, , Ripoll et al, , ), and the STEERB code developed in China (e.g., Su et al, …”
Section: New Radiation Belt Modeling Capabilities and The Quantificatmentioning
confidence: 99%
“…Figure 8 shows that the typical time scale of the evolution of the electron distribution via nonlinear trapping and scattering by long and intense chorus wave-packets can be about half an hour, i.e., rather short compared with ∼ 4 − 10 hours typically for quasi-linear diffusion by the bulk of lower-intensity chorus waves [e.g., Mourenas et al, 2014;Li et al, 2016;Ma et al, 2017b;Yang et al, 2018]. Although such fast electron flux variations have been occasionally observed [e.g., Agapitov et al, 2015a;Foster et al, 2017], they are rather unusual.…”
Section: Time Scale Of Electron Distribution Evolutionmentioning
confidence: 99%
“…At ~18:20 UT, the seed population enhancements appeared at L* = 3.9 and MLT = 5.8. Using a 3‐D diffusion model, Ma et al () have simulated the observed 10‐day diffusive evolution of energetic electrons in the slot region. In this event, ULF waves were observed at ~18:20 UT by Van Allen Probe B.…”
Section: Discussionmentioning
confidence: 99%