1978
DOI: 10.1002/zamm.19780580405
|View full text |Cite
|
Sign up to set email alerts
|

Die Greensche Matrix für zwei aneinander reibungsfrei gleitende elastische Halbräume mit verschiedenen Laméschen Moduln

Abstract: Es wird der Greensche Tensor für zwei elastische Halbräume (mit verschiedenen Laméschen Moduln), die sich berühren und reibungsfrei gegeneinander gleiten können, berechnet. Für den regulären Teil des Tensors wird ein geeigneter Potentialansatz gemacht und die Dichten dieser Potentiale aus einem singulären Integralgleichungssystem durch Fourier‐Transformation ermittelt. Als Grenzfälle ergeben sich die elastostatischen Greenschen Tensoren 2. und 3. Art für den Halbraum. Mit Hilfe des Greenschen Tensors lassen si… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

1986
1986
1997
1997

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 4 publications
0
1
0
Order By: Relevance
“…7) and (2.8) and taking into account the homogeneous contact conditions on S we get b , E ' ( U ' , u') dx + IQ,T'(u2, u') dx = 0.Therefore, according to the relations (2.9) and (2.10) it holds thatDkuY + DjuT = 0, k, j = 1,2, 3, m = 1, 2. These equalities yield [17] um(x) = [am x x] + b", x E Om, m = 1,2, (2.1 1)where am and 6"' are three-dimensional constant vectors.From the regularity of the vector u2 at infinity it follows a2 = b2 = 0 that is Now equations (2.5) for u' imply that (u')+ = 0 on S and the uniqueness theorem for the interior Dirichlet (displacement) problem gives u ' ( x ) = 0, x E fil Theorem 2.2.…”
mentioning
confidence: 90%
“…7) and (2.8) and taking into account the homogeneous contact conditions on S we get b , E ' ( U ' , u') dx + IQ,T'(u2, u') dx = 0.Therefore, according to the relations (2.9) and (2.10) it holds thatDkuY + DjuT = 0, k, j = 1,2, 3, m = 1, 2. These equalities yield [17] um(x) = [am x x] + b", x E Om, m = 1,2, (2.1 1)where am and 6"' are three-dimensional constant vectors.From the regularity of the vector u2 at infinity it follows a2 = b2 = 0 that is Now equations (2.5) for u' imply that (u')+ = 0 on S and the uniqueness theorem for the interior Dirichlet (displacement) problem gives u ' ( x ) = 0, x E fil Theorem 2.2.…”
mentioning
confidence: 90%