2016
DOI: 10.3389/fphys.2016.00623
|View full text |Cite
|
Sign up to set email alerts
|

Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases

Abstract: The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respir… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
24
0
4

Year Published

2017
2017
2024
2024

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 18 publications
(28 citation statements)
references
References 116 publications
(200 reference statements)
0
24
0
4
Order By: Relevance
“…In stark contrast to CIH models, a pronounced time-dependent redox stress characterizes functional impairments in mouse upper airway77 and diaphragm34,75 muscles in response to CSH stress. Redox modulation of upper airway muscle metabolism and function, which appears hypoxia inducible factor-1 alpha (HIF-1α)-independent,77 gives rise to pronounced muscle weakness without proteolytic degradation, notwithstanding the substantial temporal increase in muscle protein carbonyl content, which, as revealed by two-dimensional proteomic analysis, ranges from mitochondria to the cross-bridges 77.…”
Section: Introductionmentioning
confidence: 89%
See 3 more Smart Citations
“…In stark contrast to CIH models, a pronounced time-dependent redox stress characterizes functional impairments in mouse upper airway77 and diaphragm34,75 muscles in response to CSH stress. Redox modulation of upper airway muscle metabolism and function, which appears hypoxia inducible factor-1 alpha (HIF-1α)-independent,77 gives rise to pronounced muscle weakness without proteolytic degradation, notwithstanding the substantial temporal increase in muscle protein carbonyl content, which, as revealed by two-dimensional proteomic analysis, ranges from mitochondria to the cross-bridges 77.…”
Section: Introductionmentioning
confidence: 89%
“…Empirically, hypoxia is a major driver of respiratory system plasticity (Table 1). This includes potential for adaptive or compensatory plasticity in respiratory muscle that serves to protect against the challenge of oxygen deficit as well as the contemporaneous capacity to drive aberrant remodeling, which can further exacerbate and perpetuate respiratory dysfunction 27,34,35…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Frente a esta situación, existe un mecanismo fisiológico denominado vasoconstricción pulmonar hipóxica, el cual restringe el flujo sanguíneo a los alvéolos menos oxigenados y lo redirige hacia los mejor oxigenados. Sin embargo, cuando esta respuesta se mantiene por un largo tiempo genera cambios morfofuncionales, dentro de los que destacan un aumento de la vascularización pulmonar y en ocasiones una disminución del número de alvéolos (Urrutia & Aragonés, 2018 fisiológicos y/o fisiopatológicos, con el propósito de mantener la homeostasis respiratoria (Lewis & O'Halloran, 2016). Considerando que el diafragma está sometido a cargas cíclicas producidas por la respiración, es relevante estudiar el efecto de los ciclos de hipoxia en él.…”
Section: Introductionunclassified