2016
DOI: 10.1016/j.fuel.2016.04.114
|View full text |Cite
|
Sign up to set email alerts
|

Development of multi-component diesel surrogate fuel models – Part II: Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations

Abstract:  Users may download and print one copy of any publication from the public portal for the purpose of private study or research.  You may not further distribute the material or use it for any profit-making activity or commercial gain  You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0

Year Published

2018
2018
2022
2022

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 29 publications
(10 citation statements)
references
References 63 publications
0
10
0
Order By: Relevance
“…Framework Type of fuel combustion TCI closure Soot model Jangi et al [1] URANS n-Heptane ESF -Pei et al [10,21] URANS n-Dodecane L-tPDF -Pang et al [12,29,43] URANS Diesel, n-Heptane WSR Four-step D'Errico et al [13] URANS n-Dodecane WSR+PDF -Pei et al [19,20] URANS n-Heptane L-tPDF -Bhattacharjee and Haworth [22] URANS n-Heptane, n-Dodecane L-tPDF -Bolla et al [23][24][25] URANS n-Heptane, Diesel CMC Four-step Irannejad et al [27] LES n-Heptane FMDF -Lucchini et al [28] URANS n-Dodecane ESF -Wang et al [30] URANS n-Dodecane WSR Five-step Gong et al [31] LES n-Dodecane WSR Two-step Chishty et al [32] URANS n-Dodecane L-tPDF Four-step Frassoldati et al [33] URANS n-Dodecane mRIF -Cheng et al [34] URANS Biodiesel WSR Four-step Poon et al [35] URANS Diesel WSR Four-step Vishwanathan and Reitz [36] URANS Diesel WSR Five-step D'Errico et al [37] URANS n-Dodecane WSR, mRIF -Gong et al [38] URANS n-Heptane ESF -Gallot-Lavallée and Jones [39] LES n-Heptane ESF -Pandurangi et al [40] URANS n-Dodecane CMC Four-step Wehrfritz et al [41] LES n-Dodecane FGM -Jangi et al [42] URANS n-Heptane WSR Two-step Bolla et al [44,45] URANS n-Dodecane L-tPDF Four-step Note: L-tPDF denotes the Lagrangian particle transported PDF model. The two-step soot model represents the Hiroyasu-Nagle and Strickland-Constable (NSC) model which describes soot formation and oxidation [48].…”
Section: Investigator(s)mentioning
confidence: 99%
See 1 more Smart Citation
“…Framework Type of fuel combustion TCI closure Soot model Jangi et al [1] URANS n-Heptane ESF -Pei et al [10,21] URANS n-Dodecane L-tPDF -Pang et al [12,29,43] URANS Diesel, n-Heptane WSR Four-step D'Errico et al [13] URANS n-Dodecane WSR+PDF -Pei et al [19,20] URANS n-Heptane L-tPDF -Bhattacharjee and Haworth [22] URANS n-Heptane, n-Dodecane L-tPDF -Bolla et al [23][24][25] URANS n-Heptane, Diesel CMC Four-step Irannejad et al [27] LES n-Heptane FMDF -Lucchini et al [28] URANS n-Dodecane ESF -Wang et al [30] URANS n-Dodecane WSR Five-step Gong et al [31] LES n-Dodecane WSR Two-step Chishty et al [32] URANS n-Dodecane L-tPDF Four-step Frassoldati et al [33] URANS n-Dodecane mRIF -Cheng et al [34] URANS Biodiesel WSR Four-step Poon et al [35] URANS Diesel WSR Four-step Vishwanathan and Reitz [36] URANS Diesel WSR Five-step D'Errico et al [37] URANS n-Dodecane WSR, mRIF -Gong et al [38] URANS n-Heptane ESF -Gallot-Lavallée and Jones [39] LES n-Heptane ESF -Pandurangi et al [40] URANS n-Dodecane CMC Four-step Wehrfritz et al [41] LES n-Dodecane FGM -Jangi et al [42] URANS n-Heptane WSR Two-step Bolla et al [44,45] URANS n-Dodecane L-tPDF Four-step Note: L-tPDF denotes the Lagrangian particle transported PDF model. The two-step soot model represents the Hiroyasu-Nagle and Strickland-Constable (NSC) model which describes soot formation and oxidation [48].…”
Section: Investigator(s)mentioning
confidence: 99%
“…The selection of a D2 surrogate fuel model depends on the objective of the numerical study. When the study aims to predict the diesel combustion and soot formation, the use of multi-component diesel surrogate models where aromatic and cyclo-paraffin chemistry are taken into consideration is essential [33,35,[62][63][64]. However, the improved results with these multi-component diesel surrogate models always come with a significant computational overhead since they commonly consist of a greater number of chemical species.…”
Section: Chemical Kinetic Mechanismsmentioning
confidence: 99%
“…However, a comprehensive TCI closure approach such as the transported probability density function (TPDF) model is computationally expensive. Since the main focus in this study is to evaluate the performance of the Lagrangian soot model, the computationally efficient WSR which is also widely used for spray combustion modelling is selected (Cheng, Ng, Gan, Ho, & Pang, 2015;D'Errico, Lucchini, Contino, Jangi, & Bai, 2014;Pang, Jangi, et al, 2015;Poon, Pang, Ng, Gan, & Schramm, 2016). As explained later in Section 3.2, the model is able to predict the ID of the Doshisha case while the variations of ID and LOL with respect to the change in O 2 level in the Sandia n-dodecane cases are reproduced.…”
Section: Spray-turbulence-chemistry Formulationmentioning
confidence: 99%
“…Many research reports in literature concern the optimization of surrogate formulations to emulate fossil diesel by using several selected properties including cetane number, density, calorific value, viscosity, distillation curve, boiling point, lower heating value (LHV), etc. [3,[6][7][8].…”
Section: Introductionmentioning
confidence: 99%