Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents a novel hybrid optimization algorithm that combines JADE Adaptive Differential Evolution with Artificial Protozoa Optimizer (APO) to solve complex optimization problems and detect attacks. The proposed Hybrid APO-JADE Algorithm leverages JADE’s adaptive exploration capabilities and APO’s intensive exploitation strategies, ensuring a robust search process that balances global and local optimization. Initially, the algorithm employs JADE’s mutation and crossover operations, guided by adaptive control parameters, to explore the search space and prevent premature convergence. As the optimization progresses, a dynamic transition to the APO mechanism is implemented, where Levy flights and adaptive change factors are utilized to refine the best solutions identified during the exploration phase. This integration of exploration and exploitation phases enhances the algorithm’s ability to converge to high-quality solutions efficiently. The performance of the APO-JADE was verified via experimental simulations and compared with state-of-the-art algorithms using the 2022 IEEE Congress on Evolutionary Computation benchmark (CEC) 2022 and 2021. Results indicate that APO-JADE achieved outperforming results compared with the other algorithms. Considering practicality, the proposed APO-JADE was used to solve a real-world application in attack detection and tested on DS2OS, UNSW-NB15, and ToNIoT datasets, demonstrating its robust performance.
This paper presents a novel hybrid optimization algorithm that combines JADE Adaptive Differential Evolution with Artificial Protozoa Optimizer (APO) to solve complex optimization problems and detect attacks. The proposed Hybrid APO-JADE Algorithm leverages JADE’s adaptive exploration capabilities and APO’s intensive exploitation strategies, ensuring a robust search process that balances global and local optimization. Initially, the algorithm employs JADE’s mutation and crossover operations, guided by adaptive control parameters, to explore the search space and prevent premature convergence. As the optimization progresses, a dynamic transition to the APO mechanism is implemented, where Levy flights and adaptive change factors are utilized to refine the best solutions identified during the exploration phase. This integration of exploration and exploitation phases enhances the algorithm’s ability to converge to high-quality solutions efficiently. The performance of the APO-JADE was verified via experimental simulations and compared with state-of-the-art algorithms using the 2022 IEEE Congress on Evolutionary Computation benchmark (CEC) 2022 and 2021. Results indicate that APO-JADE achieved outperforming results compared with the other algorithms. Considering practicality, the proposed APO-JADE was used to solve a real-world application in attack detection and tested on DS2OS, UNSW-NB15, and ToNIoT datasets, demonstrating its robust performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.