2024
DOI: 10.3390/photonics11040287
|View full text |Cite
|
Sign up to set email alerts
|

Deterministic Shaping of Quantum Light Statistics

Garrett D. Compton,
Mark G. Kuzyk

Abstract: We propose a theoretical method for the deterministic shaping of quantum light via photon number state selective interactions. Nonclassical states of light are an essential resource for high-precision optical techniques that rely on photon correlations and noise reshaping. Notable techniques include quantum enhanced interferometry, ghost imaging, and generating fault-tolerant codes for continuous variable optical quantum computing. We show that a class of nonlinear-optical resonators can transform many-photon … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 51 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?