In this paper, we investigate the spin squeezing in a hybrid quantum system consisting of a Silicon-Vacancy (SiV) center ensemble coupled to a diamond acoustic waveguide via the strain interaction. Two sets of non-overlapping driving fields, each contains two time-dependent microwave fields, are applied to this hybrid system. By modulating these fields, the one-axis twist (OAT) interaction and two-axis two-spin (TATS) interaction can be independently realized. In the latter case the squeezing parameter scales to spin number as ξ
R
2∼1.61N−0.64 with the consideration of dissipation, which is very close to the Heisenberg limit. Furthermore, this hybrid system allows for the study of spin squeezing generated by the simultaneous presence of OAT and TATS interactions, which reveals sensitivity to the parity of the number of spins N
tot
, whether it is even or odd. Our scheme enriches the approach for generating Heisenberg-limited spin squeezing in spin-phonon hybrid systems and offers the possibility for future applications in quantum information processing.