Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C)
DOI: 10.1109/robot.1999.770360
|View full text |Cite
|
Sign up to set email alerts
|

Determination of viscous and Coulomb friction by using velocity responses to torque ramp inputs

Abstract: This paper reports the results of an experimental study conducied on a direct-drive motor t o evaluate the predicted behavior of selected friction models. W e focus the study t o the velocity response when torque ramp inputs are employed. Among the considered friction models, the dynamic friction model so-called LuGre model, captures very well the ezperimental behauior. As a consequence of the study, we derive a simple procedure t o determine the viscous and Coulomb friction from experimental velocity response… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
3

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(8 citation statements)
references
References 9 publications
0
5
0
3
Order By: Relevance
“…It is essential to highlight that the pendulum built for the experimental tests has some construction imperfections and presents a nonlinear behavior regarding its friction. The pendulum angular motion has small velocities for which is difficult to model the effect of friction [43]. Therefore, it is imperative to include such a phenomenon in the model of the pendulum with two reaction wheels.…”
Section: A Experimental Characterization Of the Pendulum Frictionmentioning
confidence: 99%
See 1 more Smart Citation
“…It is essential to highlight that the pendulum built for the experimental tests has some construction imperfections and presents a nonlinear behavior regarding its friction. The pendulum angular motion has small velocities for which is difficult to model the effect of friction [43]. Therefore, it is imperative to include such a phenomenon in the model of the pendulum with two reaction wheels.…”
Section: A Experimental Characterization Of the Pendulum Frictionmentioning
confidence: 99%
“…2 presents the experimental result of releasing the pendulum and waiting for it to stop and compares this result with the 2-RWP equation of motion with the friction model included given by: This model has a very close fit to the experimental result, where C v = 0.0031 Nms/rad and C c = 0.011 Nm. Also, the friction model used here, composed by viscous and Coulomb friction contribution, is trendy in the literature [43]. Moreover, this has not been considered in our previous paper [13], and the friction contribution is significant to be identified and included in the design of the controllers once it has a strong nonlinear behavior and this could influence in the performance of the controllers.…”
Section: A Experimental Characterization Of the Pendulum Frictionmentioning
confidence: 99%
“…The control performance depends on the values of Coulomb friction in the mathematical model for which the control is designed, and this model-based approach requires Coulomb friction identification. A procedure to determine Coulomb friction using the steady state response to a speed ramp input is proposed in [28]. A method to estimate Coulomb friction utilizing an adaptive observer on the basis of the Lyapunov technique is investigated in [29].…”
Section: Introductionmentioning
confidence: 99%
“…Od modela koji spadaju u grupu statiµ ckih modela trenja, pored navedenih vaµ zno je pomenuti i Amstrongov i Karnopov model. Prvi od njih pogodan je kod modela sa viskoznim trenjem i dobro opisuje Stribekov efekat 2 , v. Keli i Lamas [68,1999], dok je Karnopov model pogodan za numeriµ cke simulacije, v. Aih-Šelner i Firer [42,1998], jer se u podruµ cju malih relativnih brzina uzima da je relativna brzina jednaka nuli, µ cime se izbegava odre †ivanje taµ cnog trenutka u kojem v r postaje jednako nuli., v. Karnop [67,1985], Riµ card i Cutkoski [101,2002]. Zbog prirode statiµ ckog preslikavanja izme †u relativne brzine klizanja i sile trenja, statiµ cki modeli su jednostavni i pogodni za primenu, ali upravo zbog toga oni nisu u stanju da opišu neke procese karakteristiµ cne za trenje, jer ono nema trenutni odziv na promenu brzine, već ima svoju unutrašnju dinamiku.…”
Section: Modeli Suvog Trenjaunclassified
“…Zato je u tim sluµ cajevima pogodno koristiti neki od dinamiµ ckih modela trenja, kao na primer Dalov, Lu-Gre ili Elasto-plastiµ cni model. Kod njih se mikroskopske neravnine površina u kontaktu modeliraju pomoću elastiµ cnih i viskoznih elemenata, a zavisnost sile trenja od relativne brzine izraµ zena je diferencijalnim jednaµ cinama, v. Dal [30,1976], Keli i Lamas [68,1999], Kanudas i dr. [23,1995], Dupont i dr. [40,2000], Dupont i dr. [41,2002], Penestri [94,2007], Garsia [55,2008]. Oni mogu relativno dobro da opišu razne procese ukljuµ cene u fenomen trenja, i samim tim su sloµ zeniji za upotrebu.…”
Section: Modeli Suvog Trenjaunclassified