The tremendous advancement in technology, productivity and improved standard of living has come at the cost of environmental deterioration, increased energy and raw material consumption. In this regard, remanufacturing is viable option to reduce energy usage, carbon footprint and raw material usage. In this manuscript, using computational intelligence techniques we try to determine the feasibility of remanufacturing in case of roller bearings. We collected used N308 bearings from 5 different Indian cities. Using Fuzzy-TOPSIS, we found that the roundness, surface roughness and weight play a vital role in design for remanufacturing of roller bearings. Change in diameter, change in thickness and change in width showed minimal influence. We also used Taguchi analysis to reassess the problem. The roundness of inner and outer race was found to be the most influential parameters in deciding the selection of bearing for remanufacturing. The results suggest the bearing designer to design the bearing in such a way that roundness of both races will be taken cared while manufacturing a bearing. However, using Taguchi the weight of the rollers was found to be of least influence. Overall, the predictions of Taguchi analysis were found to be similar to Fuzzy-TOPSIS analysis.