2018
DOI: 10.3390/w10111514
|View full text |Cite
|
Sign up to set email alerts
|

Detecting Snowfall Events over Mountainous Areas Using Optical Imagery

Abstract: Snowfall over mountainous areas not only has important implications on the water cycle and the Earth’s radiation balance, but also causes potentially hazardous weather. However, snowfall detection remains one of the most difficult problems in modern hydrometeorology. We present a method for detecting snowfall events from optical satellite data for seasonal snow in mountainous areas. The proposed methodology is based on identifying expanded snow cover or suddenly declined snow grain size using time series image… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 36 publications
(49 reference statements)
0
1
0
Order By: Relevance
“…Air temperature has a significant influence on snow freezing and melting. The change of temperature will influence the content of liquid water in snow, then changes the grain size and density of snow, which will affect the detection of snow depth by satellite microwave data [53]. The air temperature used in the downscaling snow depth retrieval model was from the Global Land Data Assimilation System (GLDAS) data [54,55], GLDAS-Noah is the Noah model driven by the Global Land Data Assimilation System, version 2.1 (GLDAS-2.1) (https://disc.gsfc.nasa.gov/datasets/ (accessed on 1 November 2020)), which was developed jointly by scientists at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration (NOAA) NCEP [56].…”
Section: Air Temperaturementioning
confidence: 99%
“…Air temperature has a significant influence on snow freezing and melting. The change of temperature will influence the content of liquid water in snow, then changes the grain size and density of snow, which will affect the detection of snow depth by satellite microwave data [53]. The air temperature used in the downscaling snow depth retrieval model was from the Global Land Data Assimilation System (GLDAS) data [54,55], GLDAS-Noah is the Noah model driven by the Global Land Data Assimilation System, version 2.1 (GLDAS-2.1) (https://disc.gsfc.nasa.gov/datasets/ (accessed on 1 November 2020)), which was developed jointly by scientists at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration (NOAA) NCEP [56].…”
Section: Air Temperaturementioning
confidence: 99%