19th AIAA Applied Aerodynamics Conference 2001
DOI: 10.2514/6.2001-2463
|View full text |Cite
|
Sign up to set email alerts
|

Design of low Reynolds number airfoils with trips

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
13
0
3

Year Published

2008
2008
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(17 citation statements)
references
References 6 publications
1
13
0
3
Order By: Relevance
“…For example Shyy et al [1999] examined both rigid and flexible airfoils, Selig and Guglielmo [1997] showed that high lift conditions could be obtained using a concave pressure recovery and aft loading. Gopalarathnam et al [2003] applied boundary layer trips coupled with transition ramps in the geometric design. They showed low Reynolds number performance characteristics resulting in higher lift to drag ratios when operating near the maximum lift coefficient condition.…”
Section: Introductionmentioning
confidence: 99%
“…For example Shyy et al [1999] examined both rigid and flexible airfoils, Selig and Guglielmo [1997] showed that high lift conditions could be obtained using a concave pressure recovery and aft loading. Gopalarathnam et al [2003] applied boundary layer trips coupled with transition ramps in the geometric design. They showed low Reynolds number performance characteristics resulting in higher lift to drag ratios when operating near the maximum lift coefficient condition.…”
Section: Introductionmentioning
confidence: 99%
“…These designs have more or less something to do with the transitional bubble structure in the upper surface, e.g. the use of a -transition ramp‖ to promote the transition without introducing large bubbles [9], and the introduction of concave pressure recovery and aft loading to redistribute the load [36]. However, the incomplete understanding of transition process greatly impedes the development of newer airfoils.…”
Section: Previous Researches On Low Reynolds Number Aerodynamicsmentioning
confidence: 99%
“…A equação (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19) é chamada a equação de Orr-Sommerfeld e é a equação fundamental para a teoria de estabilidade incompressível. As soluções da equação (2-19) correspondem às ondas de pequenas perturbações e são denominadas as ondas de Tollmien-Schlichting.…”
Section: Sumáriounclassified
“…Através da teoria de amplicação espacial, soluções da equação(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19) serão determinadas, visto que a amplitude da perturbação em um ponto é independente no tempo, mudando apenas com a distância. Os autovalores da equação de Orr-Sommerfeld são apresentados em diagramas (α,Re) que descrevem os três estados de uma perturbação a um dado número de Reynolds: amortecido, neutro ou amplicado.…”
unclassified
See 1 more Smart Citation