2023
DOI: 10.1101/2023.07.31.551393
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Density Physics-Informed Neural Network reveals sources of cell heterogeneity in signal transduction

Abstract: SummaryThe transduction time between signal initiation and final response provides valuable information on the underlying signaling pathway, including its speed and precision. Furthermore, multimodality in transduction-time distribution informs that the response is regulated by multiple pathways with different transduction speeds. Here, we developed Density physics-informed neural network (Density-PINN) to infer the transduction-time distribution, challenging to measure, from measurable final stress response t… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 52 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?