To build an automated system detecting toxic chemicals from Raman spectra, we have to obtain sufficient data of toxic chemicals. However, it usually costs high to gather Raman spectra of toxic chemicals in diverse situations. Tackling this problem, we develop methods to generate synthetic Raman spectra of DMMP and 2-CEES without actual experiments. First, we propose certain mathematical transforms to augment few original Raman spectra. Then, we train deep generative models to generate more realistic and diverse data. Analyzing synthetic Raman spectra of toxic chemicals generated by our methods through visualization, we qualitatively verify that the data are sufficiently similar to original data and diverse. For conclusion, we obtain a synthetic dataset of DMMP and 2-CEES with the proposed algorithm.