2019
DOI: 10.1002/mma.5615
|View full text |Cite
|
Sign up to set email alerts
|

Delay driven Hopf bifurcation and chaos in a diffusive toxin producing phytoplankton‐zooplankton model

Abstract: This paper deals with a diffusive toxin producing phytoplankton‐zooplankton model with maturation delay. By analyzing eigenvalues of the characteristic equation associated with delay parameter, the stability of the positive equilibrium and the existence of Hopf bifurcation are studied. Explicit results are derived for the properties of bifurcating periodic solutions by means of the normal form theory and the center manifold reduction for partial functional differential equations. Numerical simulations not only… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…Then, Equation () becomes scriptAt=12()q1y+trueq1¯truey¯fn+Wfalse(y,truey¯false),$$ {\mathcal{A}}_t=\frac{1}{2}\left({q}_1y+\overline{q_1}\overline{y}\right){f}_n+W\left(y,\overline{y}\right), $$ with Wfalse(y,truey¯false)=h2()y+truey¯,iyitruey¯,0$$ W\left(y,\overline{y}\right)=\frac{h}{2}\left(y+\overline{y}, iy-i\overline{y},0\right) $$. Using the ideas from Wu and Zhao et al, 33,34 y$$ y $$ satisfies truey˙=iξntrueη˜y+gfalse(y,truey¯false),$$ \dot{y}=i{\xi}_n\tilde{\eta}y+g\left(y,\overline{y}\right), $$ where gfalse(y,truey¯false)=()normalΩ1false(0false)inormalΩ2false(0false)Hfalse(scriptAt,0false),fn.$$ g\left(y,\overline{y}\right)=\left({\Omega}_1(0)-i{\Omega}_2(0)\right)\left\langle H\left({\mathcal{A}}_t,0\right),{f}_n\right\rangle . $$ …”
Section: Orientation Of the Orbits And Their Stability In Self‐diffus...mentioning
confidence: 99%
“…Then, Equation () becomes scriptAt=12()q1y+trueq1¯truey¯fn+Wfalse(y,truey¯false),$$ {\mathcal{A}}_t=\frac{1}{2}\left({q}_1y+\overline{q_1}\overline{y}\right){f}_n+W\left(y,\overline{y}\right), $$ with Wfalse(y,truey¯false)=h2()y+truey¯,iyitruey¯,0$$ W\left(y,\overline{y}\right)=\frac{h}{2}\left(y+\overline{y}, iy-i\overline{y},0\right) $$. Using the ideas from Wu and Zhao et al, 33,34 y$$ y $$ satisfies truey˙=iξntrueη˜y+gfalse(y,truey¯false),$$ \dot{y}=i{\xi}_n\tilde{\eta}y+g\left(y,\overline{y}\right), $$ where gfalse(y,truey¯false)=()normalΩ1false(0false)inormalΩ2false(0false)Hfalse(scriptAt,0false),fn.$$ g\left(y,\overline{y}\right)=\left({\Omega}_1(0)-i{\Omega}_2(0)\right)\left\langle H\left({\mathcal{A}}_t,0\right),{f}_n\right\rangle . $$ …”
Section: Orientation Of the Orbits And Their Stability In Self‐diffus...mentioning
confidence: 99%