2019
DOI: 10.1111/ivb.12236
|View full text |Cite
|
Sign up to set email alerts
|

Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore

Abstract: Defecation in the ctenophore Mnemiopsis leidyi is a stereotyped sequence of effector responses that occur with a regular ultradian rhythm. Here I used video microscopy to describe new features and correct previous reports of the gastrovascular system during and between defecations. Contrary to the scientific literature, individuals defecated through only one of the two anal canals which possesses the only anal pore. The anal pore was not visible as a permanent structure as depicted in textbooks, but appeared a… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
23
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(26 citation statements)
references
References 36 publications
3
23
0
Order By: Relevance
“…Absorption of both food and ferritin particles into ciliated, epithelial cells of the canal system suggest that both phagocytosis and pinocytosis are active in these cells (Bumann and Puls 1997; Franc 1972; Presnell et al 2016). It was recently re-confirmed that excretion of undigested particles in ctenophores occurs mainly through ‘anal pores’ opposite of the mouth (Agassiz 1850; Bumann and Puls 1997; Chun 1880; Main 1928; Presnell et al 2016; Tamm 2019). The functional similarities between the through-guts of ctenophores and bilaterians raised speculations about their common ancestry, but the lack of diagnostic genes for cnidarian or bilaterian pharynx, midgut or anus (e.g.…”
Section: Development and Cell Type Diversity Of Animal Digestive Systemsmentioning
confidence: 95%
“…Absorption of both food and ferritin particles into ciliated, epithelial cells of the canal system suggest that both phagocytosis and pinocytosis are active in these cells (Bumann and Puls 1997; Franc 1972; Presnell et al 2016). It was recently re-confirmed that excretion of undigested particles in ctenophores occurs mainly through ‘anal pores’ opposite of the mouth (Agassiz 1850; Bumann and Puls 1997; Chun 1880; Main 1928; Presnell et al 2016; Tamm 2019). The functional similarities between the through-guts of ctenophores and bilaterians raised speculations about their common ancestry, but the lack of diagnostic genes for cnidarian or bilaterian pharynx, midgut or anus (e.g.…”
Section: Development and Cell Type Diversity Of Animal Digestive Systemsmentioning
confidence: 95%
“…The cnidarian gut is a sac with only one opening, functioning as both mouth and anus, whereas the ctenophores have a gut with a mouth, a stomach and a pair of anal canals leading to temporal anal openings ( pores) [19,64,65].…”
Section: Evolution Of the Eumetazoa: The Relationship Between Cnidaria And Ctenophoramentioning
confidence: 99%
“…The food is processed in three phases as it passes through the acidic environment of the pharynx and then it moves through one alkaline phase along the folds of the pharynx and through another one near the so-called stomach, where food particles are broken down by cilia. The small particles are distributed to the body by the endodermal system of meridional canals that run subjacent to the comb rows, while the remaining larger (mainly exoskeletal) particles will be egested back out of the pharynx (Bumann and Puls, 1997; Tamm, 2014, 2019).…”
Section: Ctenophoramentioning
confidence: 99%
“…Defecation is preceded by the combination of the constriction of the walls of esophagus together with the slowing down of cilia beating. Although these systems haven’t been thoroughly studied, there is experimental evidence that the adjustment of the ciliary beating in opposing directions and the various muscle contractions for food ingestion/digestion and fluid circulation, as well as the modulation of cilia beating prior to defecation is likely to be regulated by local electrical conduction realized through epithelial gap junctions or by neural nets (see Tamm, 2014, 2019 for details; Simmons and Martindale, 2015 for a relevant review).…”
Section: Ctenophoramentioning
confidence: 99%
See 1 more Smart Citation