2022
DOI: 10.3390/act11070203
|View full text |Cite
|
Sign up to set email alerts
|

Deep Reinforcement Learning for Stability Enhancement of a Variable Wind Speed DFIG System

Abstract: Low-frequency oscillations are a primary issue for integrating a renewable source into the grid. The objective of this study was to find sensitive parameters that cause low-frequency oscillations and design a Twin Delayed Deep Deterministic Policy Gradient (TD3) agent controller to damp the oscillations without requiring an accurate system model. In this work, a Q-learning (QL)-based model-free wind speed DFIG was designed on the rotor-side converter (RSC), and a QL-based model-free DC-link voltage regulator w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 56 publications
(100 reference statements)
0
0
0
Order By: Relevance