2023
DOI: 10.48550/arxiv.2301.05575
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep learning-based approaches for human motion decoding in smart walkers for rehabilitation

Abstract: Gait disabilities are among the most frequent impairments worldwide. Their treatment increasingly relies on rehabilitation therapies, in which smart walkers are being introduced to empower the user's recovery state and autonomy, while reducing the clinicians effort. For that, these should be able to decode human motion and needs, as early as possible. Current walkers decode motion intention using information gathered from wearable or embedded sensors, namely inertial units, force sensors, hall sensors, and las… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 48 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?