2020
DOI: 10.1007/978-3-030-43380-2_11
|View full text |Cite
|
Sign up to set email alerts
|

Decomposition of the Tensor Product of Two Hilbert Modules

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 15 publications
0
3
0
Order By: Relevance
“…\end{equation*}$$Clearly B(t)$B^{(t)}$ is a sesqui‐analytic hermitian function for any real number t$t$. It follows from [11, Lemma 6.1] that B(t)$B^{(t)}$ is quasi‐invariant with the multiplier c(u)=u¯$c(u)=\overline{u}$. A direct computation shows that B(t)false(bold-italicz,bold-italicwfalse)=d+1false(1〈〉z,wfalse)tfalse(d+1false)+21j1zjw¯jz2w¯1zdw¯1z1w¯21j2zjw¯jzdw¯2z1w¯dz2w¯d1jdzjw¯j.$$\begin{align} B^{(t)}(\bm{z}, \bm{w})= \frac{d+1}{(1-{\left\langle \bm{z}, \bm{w}\right\rangle})^{t (d+1)+2}} \def\eqcellsep{&}\begin{pmatrix} 1-\sum _{j\ne 1}z_j\bar{w}_j&z_2\bar{w}_1&\cdots & z_d\bar{w}_1\\[3pt] z_1...…”
Section: A Class Of Quasi‐invariant Kernelsmentioning
confidence: 99%
See 2 more Smart Citations
“…\end{equation*}$$Clearly B(t)$B^{(t)}$ is a sesqui‐analytic hermitian function for any real number t$t$. It follows from [11, Lemma 6.1] that B(t)$B^{(t)}$ is quasi‐invariant with the multiplier c(u)=u¯$c(u)=\overline{u}$. A direct computation shows that B(t)false(bold-italicz,bold-italicwfalse)=d+1false(1〈〉z,wfalse)tfalse(d+1false)+21j1zjw¯jz2w¯1zdw¯1z1w¯21j2zjw¯jzdw¯2z1w¯dz2w¯d1jdzjw¯j.$$\begin{align} B^{(t)}(\bm{z}, \bm{w})= \frac{d+1}{(1-{\left\langle \bm{z}, \bm{w}\right\rangle})^{t (d+1)+2}} \def\eqcellsep{&}\begin{pmatrix} 1-\sum _{j\ne 1}z_j\bar{w}_j&z_2\bar{w}_1&\cdots & z_d\bar{w}_1\\[3pt] z_1...…”
Section: A Class Of Quasi‐invariant Kernelsmentioning
confidence: 99%
“…Proof The multiplication d$d$‐tuple M$\bm{M}$ on the Hilbert space HK(double-struckBd,double-struckCd)$\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^d)$ is bounded if and only if there exists c>0$c>0$ such that ()c2false⟨bold-italicz,0.16embold-italicwfalse⟩K(z,w)$\left(c^2-\langle {\bm{z}},\,{\bm{w}} \rangle \right)K(\bm{z}, \bm{w})$ is nonnegative definite [11, Lemma 2.7(ii)]. c2z,wKfalse(bold-italicz,bold-italicwfalse)|resdouble-struckCdscriptP={c2a,1a,2a1,1a1,2}z,wl1bold-italicw¯bold-italicz+c2a,2a1,2z,w…”
Section: Scriptufalse(dfalse)$\mathcal {U}(d)$ Homogeneous Operatorsmentioning
confidence: 99%
See 1 more Smart Citation
“…We begin with a lemma, which is a variant of [17,Lemma 4.14]. We include its proof for the sake of completeness.…”
Section: Proof Of Theorem 23 and Its Consequencesmentioning
confidence: 99%