Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS.aging | mitochondria | immunity | reactive oxygen species | C. elegans M itochondria are essential for various physiological processes, including energy production, apoptosis, metabolism, and signaling (1). Thus, it is not surprising that defects in mitochondrial function are linked to many diseases. Interestingly, however, mild inhibition of mitochondrial respiration increases the lifespans of many organisms (2, 3). In particular, genetic inhibition of components of the mitochondrial electron transport chain (ETC) increases longevity of the roundworm Caenorhabditis elegans. For example, mutations in clk-1 (a ubiquinone hydroxylase) and isp-1 (iron-sulfur protein 1 in the mitochondrial complex III) extend the lifespans of worms (4, 5). Longevity resulting from mitochondrial ETC inhibition also has been observed in Drosophila (6, 7) and mice (8, 9). Thus, the mechanisms responsible for longevity may be evolutionarily conserved.Key genetic factors that mediate longevity caused by reduced mitochondrial respiration in C. elegans have been identified recently (10-17). However, the mechanisms are not completely understood. Hypoxia-inducible factor 1 (HIF-1), the master transcriptional regulator of cellular responses to hypoxia, is one of the mediators of longevity caused by inhibition of mitochondrial respiration in C. elegans (12). The physiological importance of HIF-1α in humans is underscored by the fact that mutations in VHL, the von HippelLindau tumor suppressor gene, which encodes an E3-ubiquitin ligase component required for the degradation of HIF-1, lead to an inherited form of cancer (18,19). HIF-1 regulates adaptation to low oxygen and various other biological processes, including axon guidance, immunity, iron homeostasis, and aging (20-29). Increased levels of HIF-1 by vhl-1 mutations or by overexpression of HIF-1 lengthen the lifespan of C. elegans (27, 28). In addition, we previously showed that inhibition of mitochondrial respiration promotes longevity by elevating reactive oxygen species (ROS) levels and incr...