Cellular senescence is a natural barrier to tumorigenesis and it contributes to the antitumor effects of several therapies, including radiation and chemotherapeutic drugs. Senescence also plays an important role in aging, fibrosis, and tissue repair. The DNA damage response is a key event leading to senescence, which is characterized by the senescence-associated secretory phenotype (SASP) that includes expression of inflammatory cytokines. Here we show that cGMP-AMP (cGAMP) synthase (cGAS), a cytosolic DNA sensor that activates innate immunity, is essential for senescence. Deletion of cGAS accelerated the spontaneous immortalization of mouse embryonic fibroblasts. cGAS deletion also abrogated SASP induced by spontaneous immortalization or DNA damaging agents, including radiation and etoposide. cGAS is localized in the cytoplasm of nondividing cells but enters the nucleus and associates with chromatin DNA during mitosis in proliferating cells. DNA damage leads to accumulation of damaged DNA in cytoplasmic foci that contain cGAS. In human lung adenocarcinoma patients, low expression of cGAS is correlated with poor survival. These results indicate that cGAS mediates cellular senescence and retards immortalization. This is distinct from, and complementary to, the role of cGAS in activating antitumor immunity.ellular senescence is a state of irreversible cell cycle arrest triggered by various types of cellular and environmental stress, such as telomere shortening, oncogene activation, and DNA damage (1, 2). Senescence appears to be an antiproliferation process that limits the growth of damaged cells and acts as a potent barrier to tumorigenesis (3, 4). Senescence is characterized by several unique features, including enlarged and flattened cell morphology (5), increased senescence-associated β-galactosidase (SA-β-Gal) activity (6, 7), and in some cell types, a widespread change in chromatin modification, known as senescence-associated heterochromatin foci (SAHF) (7). At the molecular level, the p53-p21 WAF1 and pRb-p16 INK4a tumor suppressor pathways have been reported to be key mechanisms that control the execution and maintenance of senescence (8,9). In addition to these cellular features, senescent cells also undergo massive changes in the expression of genes that are thought to affect the tissue microenvironment (5). Senescent cells secrete a variety of soluble factors including inflammatory cytokines, growth factors, and proteases; such senescence-associated secretory phenotype (SASP) is a hallmark of senescence (10-12).Components of SASP not only serve as a marker of senescence, but also participate in the senescence process (13). Interleukin 6 (IL6) and IL8, two key components of SASP, reinforce the senescence growth arrest in neighboring cells (14,15). Additionally, these cytokines and other secreted factors attract immune cells, leading to the elimination of senescent cells (16). Given these important functions, SASP is regulated at both transcriptional and epigenetic levels, such as by nuclear factor κB (NF...