This paper describes an approach for generating lower bounds for the Curriculumbased course timetabling problem, which was presented at the International Timetabling Competition (ITC-2007, Track 3). So far, several methods based on integer linear programming have been proposed for computing lower bounds of this minimization problem. We present a new partition-based approach that is based on the "divide and conquer" principle. The proposed approach uses Iterative Tabu Search to partition the initial problem into sub-problems which are solved with an ILP solver. Computational outcomes show that this approach is able to improve on the current best lower bounds for 12 out of the 21 benchmark instances, and to prove optimality for 6 of them. These new lower bounds are useful to estimate the quality of the upper bounds obtained with various heuristic approaches.