2021
DOI: 10.3390/su132413579
|View full text |Cite
|
Sign up to set email alerts
|

Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction

Abstract: The application of deep learning (DL) for solving construction safety issues has achieved remarkable results in recent years that are superior to traditional methods. However, there is limited literature examining the links between DL and safety management and highlighting the contributions of DL studies in practice. Thus, this study aims to synthesize the current status of DL studies on construction safety and outline practical challenges and future opportunities. A total of 66 influential construction safety… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(9 citation statements)
references
References 169 publications
0
2
0
Order By: Relevance
“…Various types of sensors (e.g., cameras and laser ranging sensors) can be added to the acquisition and analysis system to further improve accuracy, and data fitting can be used to identify the spatial relationship between two monitoring points. In addition, the deep learning approach can be considered in future studies on construction equipment safety management [36], such as predicting the motion attitude of climbing equipment by accumulating a large amount of climbing data.…”
Section: Discussionmentioning
confidence: 99%
“…Various types of sensors (e.g., cameras and laser ranging sensors) can be added to the acquisition and analysis system to further improve accuracy, and data fitting can be used to identify the spatial relationship between two monitoring points. In addition, the deep learning approach can be considered in future studies on construction equipment safety management [36], such as predicting the motion attitude of climbing equipment by accumulating a large amount of climbing data.…”
Section: Discussionmentioning
confidence: 99%
“…At the prior moment, the status degree information is ignored by determining the reset gate is UPkfalse(tfalse)$$ {UP}_k^{(t)} $$. The bias matrix is B and the weight matrix WE 37 . Where Okfalse(T1false)$$ {O}_k^{\left(T-1\right)} $$ is the output based on a hidden state and at step T , the reset information is represented as O˜kfalse(Tfalse)$$ {\tilde{O}}_k^{(T)} $$.…”
Section: Proposed Methodologymentioning
confidence: 99%
“…Os autores destacam a necessidade de processos automatizados envolvendo outras tecnologias digitais, principalmente a visão computacional. Observa-se na literatura o aumento das aplicações de visão computacional em inspeções de segurança em canteiro de obras nos últimos anos (AKINOSHO et al, 2020;PHAM et al, 2021;COSTA, 2022). São identificadas implementações principalmente de técnicas de aprendizado de máquina (AM) e, mais especificamente, de aprendizado profundo (AP) (campos da inteligência artificial) na detecção de equipamentos de proteção individual e de SPCQ, entre outras aplicações (AKINOSHO et al, 2020;PHAM et al, 2021;COSTA, 2022).…”
Section: Introductionunclassified
“…Observa-se na literatura o aumento das aplicações de visão computacional em inspeções de segurança em canteiro de obras nos últimos anos (AKINOSHO et al, 2020;PHAM et al, 2021;COSTA, 2022). São identificadas implementações principalmente de técnicas de aprendizado de máquina (AM) e, mais especificamente, de aprendizado profundo (AP) (campos da inteligência artificial) na detecção de equipamentos de proteção individual e de SPCQ, entre outras aplicações (AKINOSHO et al, 2020;PHAM et al, 2021;COSTA, 2022). Ottoni et al (2023) pontuam que um desafio para a aplicação de técnicas de AP no setor da construção consiste, muitas vezes, na disponibilidade de pequenos bancos de dados para treinamento desses algoritmos de detecção.…”
Section: Introductionunclassified