2022
DOI: 10.1109/tie.2021.3053883
|View full text |Cite
|
Sign up to set email alerts
|

Current Sharing Based on Incremental Passivity and Unknown Load Finite-Time Estimation for Multilevel Connected DC–DC Converters

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 31 publications
0
5
0
Order By: Relevance
“…In the power supply control system, the control algorithm adjusts the load voltage output, and the modulation algorithm converts the voltage into PWM control. However, the modulation algorithm usually has a delay [27], so the modulation delay link is summarized in the system model. ()L1s+R1i1goodbreak+()Ls+RiL=u1KeTs()L2s+R2i2goodbreak+()Ls+RiL=u2KeTsLns+Rnin+Ls+RiL=unKeTsi1+i2+in=iL$$\begin{equation}\left\{ { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {\left( {{L}_1s + {R}_1} \right){i}_1 + \left( {Ls + R} \right){i}_L = {u}_1K{e}^{ - Ts}}\\[2pt] {\left( {{L}_2s + {R}_2} \right){i}_2 + \left( {Ls + R} \right){i}_L = {u}_2K{e}^{ - Ts}}\\[2pt] \vdots \\[2pt] \def\eqcellsep{&}\begin{array}{l} \left( {{L}_ns + {R}_n} \right){i}_n + \left( {Ls + R} \right){i}_L = {u}_nK{e}^{ - Ts}\\[2pt] {i}_1 + {i}_2 \cdots + {i}_n = {i}_L \end{array} \end{array} } \right.\end{equation}$$…”
Section: Preliminariesmentioning
confidence: 99%
See 4 more Smart Citations
“…In the power supply control system, the control algorithm adjusts the load voltage output, and the modulation algorithm converts the voltage into PWM control. However, the modulation algorithm usually has a delay [27], so the modulation delay link is summarized in the system model. ()L1s+R1i1goodbreak+()Ls+RiL=u1KeTs()L2s+R2i2goodbreak+()Ls+RiL=u2KeTsLns+Rnin+Ls+RiL=unKeTsi1+i2+in=iL$$\begin{equation}\left\{ { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {\left( {{L}_1s + {R}_1} \right){i}_1 + \left( {Ls + R} \right){i}_L = {u}_1K{e}^{ - Ts}}\\[2pt] {\left( {{L}_2s + {R}_2} \right){i}_2 + \left( {Ls + R} \right){i}_L = {u}_2K{e}^{ - Ts}}\\[2pt] \vdots \\[2pt] \def\eqcellsep{&}\begin{array}{l} \left( {{L}_ns + {R}_n} \right){i}_n + \left( {Ls + R} \right){i}_L = {u}_nK{e}^{ - Ts}\\[2pt] {i}_1 + {i}_2 \cdots + {i}_n = {i}_L \end{array} \end{array} } \right.\end{equation}$$…”
Section: Preliminariesmentioning
confidence: 99%
“…And this finite‐time t satisfies TVfalse(x0false)1αcfalse(1αfalse)$T \le \frac{{V{{({x}_0)}}^{1 - \alpha }}}{{c( {1 - \alpha } )}}$. Lemma [23]: For the following systems: trueė1=φfalse(tfalse)e2φfalse(tfalse)k1sigβ1false(e1false)trueė2=φfalse(tfalse)k2sigβ2false(e1false)$$\begin{equation} \def\eqcellsep{&}\begin{array}{l} {{\dot{e}}}_1 = \varphi (t){e}_2 - \varphi (t){k}_1si{g}^{{\beta }_1}({e}_1)\\[3pt] {{\dot{e}}}_2 = - \varphi (t){k}_2si{g}^{{\beta }_2}({e}_1) \end{array} \end{equation}$$where ϕ(t)>0,0.33em0β11,0.33em0.33emβ2=0.33em2β11$\phi ( t ) > 0,\ 0 \le {\beta }_1 \le 1,\ \ {\beta }_2 = \ 2{\beta }_1 - 1$, there are appropriate gains k 1 and k 2 to make the system stable for a finite time. The stability theory is derived from references [26, 27]. The proof is too long and will not be explained here.…”
Section: Preliminariesmentioning
confidence: 99%
See 3 more Smart Citations