Our system is currently under heavy load due to increased usage. We're actively working on upgrades to improve performance. Thank you for your patience.
2014
DOI: 10.2465/jmps.140129
|View full text |Cite
|
Sign up to set email alerts
|

Cuprobismutite group minerals (cuprobismutite, hodrušhite, kupčíkite and padĕraite), other Bi–sulfosalts and Bi–tellurides from the Obari mine, Yamagata Prefecture, Japan

Abstract: Cuprobismutite group minerals have been discovered for the first time in Japan from the Obari mine, Yamagata Prefecture. Furthermore, many kinds of Bi-sulfosalts and Bi-tellurides have been found from this mine. Cuprobismutite occurs as irregular particles which are intergrown with makovickyite. (S 21.91 Se 0.09 ) ∑22.00 (based on total atoms = 42) for hodrušhite, kupčíkite and padĕraite, respectively. The content of trace elements (Ag, Fe and Pb) in each cuprobismutite group mineral is consistent with the c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 28 publications
0
3
0
1
Order By: Relevance
“…五十公野 裕也・中島 和夫 のCuを含む。同様な化学組成を示すコサラ鉱は大張鉱山 (Izumino et al, 2014) 4a)。本鉱山産のものと類似した化学組成を示すリリアン 鉱は,揚ノ沢鉱山 (Nedachi et al, 1973)や神岡鉱山 (Mariko et al, 1996 (Sugaki et al, 1980)などから報告されている。アイ キン鉱 輝蒼鉛鉱系鉱物は,黄銅鉱と共生することが鳳翩 山地域の鉱床群 (Nakashima et al, 1981)などから報告され (Nakashima et al, 1981)や揚ノ沢鉱山 (Nedachi et al, 1973) (Mariko et al, 1996)や鳳翩山地域の鉱床群 (Nakashima et al, 1981)…”
unclassified
“…五十公野 裕也・中島 和夫 のCuを含む。同様な化学組成を示すコサラ鉱は大張鉱山 (Izumino et al, 2014) 4a)。本鉱山産のものと類似した化学組成を示すリリアン 鉱は,揚ノ沢鉱山 (Nedachi et al, 1973)や神岡鉱山 (Mariko et al, 1996 (Sugaki et al, 1980)などから報告されている。アイ キン鉱 輝蒼鉛鉱系鉱物は,黄銅鉱と共生することが鳳翩 山地域の鉱床群 (Nakashima et al, 1981)などから報告され (Nakashima et al, 1981)や揚ノ沢鉱山 (Nedachi et al, 1973) (Mariko et al, 1996)や鳳翩山地域の鉱床群 (Nakashima et al, 1981)…”
unclassified
“…In this study, the sulfidation state shows a decreasing trend from prograde to the retrograde stage as indicated by the evolution of mineral assemblages (e.g., from pyrite-chalcopyrite in prograde into pyrrhotite-pyrite-arsenopyrite in the retrograde stage). In addition, Bi can occur in various oxidation states from Bi 0 (native Bi) to Bi 3+ in the form of bismuthinite and Bi-sulfosalts [25,30]. In this study, since the native Bi typically occurs as blebs overgrown by other sulfides or Bi-sulfosalts (e.g., galena, cossalite), we suggest that native Bi formed earlier than other Bi-sulfosalts.…”
Section: Discussionmentioning
confidence: 59%
“…Although few studies have mentioned the formation environments of Cu-Bi sulfosalts and associated paděraite, we note their occurrence is generally in deposits characterized by relatively high temperatures, including metamorphosed W deposits [8], granite-related Cu-rich veinlets, and Li-Be-bearing granitic pegmatite at Swartberg ( [10] and references therein). Furthermore, based on fluid inclusion data (310-390 • C) for quartz from the Obari mine, Japan, formation of cuprobismutite-group minerals took place above 300 • C [13].…”
Section: A New Skarn Occurrence Of Kupčíkite and Paděraite The First ...mentioning
confidence: 99%
“…Paděraite, Cu 6 AgPb-Bi 12 S 22 , is a closely related phase [7]. These minerals are reported from only a limited number of occurrences in mineralized veins and skarns, e.g., from the Felbertal metamorphogenic scheelite deposit, Austria [5,8]; the Băiţa Bihor Cu and Ocna de Fier Fe-Cu skarns, Romania [6,9]; the Swartberg rare metal pegmatite, South Africa [10]; and in Slovakia [11], Poland [12], and the high-grade Obari Au-Cu-Bi deposit, Japan [13]. Makovicky [14] postulated the general formula for these minerals as Cu 4 Me 2(N-1)+1 Bi 4 S 2N+8 , where Me is Bi and Ag, and N is the order number for each homologue type.…”
Section: Introductionmentioning
confidence: 99%