BackgroundHighly active antiretroviral therapy (HAART) restores inflammatory immune responses in AIDS patients which may unmask previous subclinical infections or paradoxically exacerbate symptoms of opportunistic infections. In resource-poor settings, 25% of patients receiving HAART may develop CNS-related immune reconstitution inflammatory syndrome (IRIS). Here we describe a reliable mouse model to study underlying immunopathological mechanisms of CNS-IRIS.MethodsUtilizing our HSV brain infection model and mice with MAIDS, we investigated the effect of immune reconstitution on MAIDS mice harboring opportunistic viral brain infection. Using multi-color flow cytometry, we quantitatively measured the cellular infiltrate and microglial activation.ResultsInfection with the LP-BM5 retroviral mixture was found to confer susceptibility to herpes simplex virus (HSV)-1 brain infection to normally-resistant C57BL/6 mice. Increased susceptibility to brain infection was due to severe immunodeficiency at 8 wks p.i. and a marked increase in programmed death-1 (PD-1) expression on CD4+ and CD8+ T-cells. Both T-cell loss and opportunistic brain infection were associated with high level PD-1 expression because PD-1-knockout mice infected with LP-BM5 did not exhibit lymphopenia and retained resistance to HSV-1. In addition, HSV-infection of MAIDS mice stimulated peripheral immune cell infiltration into the brain and its ensuing microglial activation. Interestingly, while opportunistic herpes virus brain infection of C57BL/6 MAIDS mice was not itself lethal, when T-cell immunity was reconstituted through adoptive transfer of virus-specific CD3+ T-cells, it resulted in significant mortality among recipients. This immune reconstitution-induced mortality was associated with exacerbated neuroinflammation, as determined by MHC class II expression on resident microglia and elevated levels of Th1 cytokines in the brain.ConclusionsTaken together, these results indicate development of an immune reconstitution disease within the central nervous system (CNS-IRD). Experimental immune reconstitution disease of the CNS using T-cell repopulation of lymphopenic murine hosts harboring opportunistic brain infections may help elucidate neuroimmunoregulatory networks that produce CNS-IRIS in patients initiating HAART.