2020
DOI: 10.1371/journal.ppat.1008700
|View full text |Cite
|
Sign up to set email alerts
|

Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica

Abstract: With antibiotic resistance rates on the rise, it is critical to understand how microbial species interactions influence the evolution of resistance. In obligate mutualisms, the survival of any one species (regardless of its intrinsic resistance) is contingent on the resistance of its cross-feeding partners. This sets the community antibiotic sensitivity at that of the 'weakest link' species. In this study, we tested the hypothesis that weakest link dynamics in an obligate cross-feeding relationship would limit… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
21
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 38 publications
(21 citation statements)
references
References 62 publications
0
21
0
Order By: Relevance
“…In recent years, evolution-based strategies for impeding drug resistance have gained significant attention. These approaches have identified a number of different factors that could modulate resistance evolution, including spatial heterogeneity ( Zhang et al, 2011 ; Baym et al, 2016a ; Greulich et al, 2012 ; Hermsen et al, 2012 ; Moreno-Gamez et al, 2015 ; Gokhale et al, 2018 ; De Jong and Wood, 2018 ; Santos-Lopez et al, 2019 ); competitive ( Read et al, 2011 ; Hansen et al, 2017 ; Hansen et al, 2020 ), cooperative ( Meredith et al, 2015b ; Artemova et al, 2015 ; Sorg et al, 2016 ; Tan et al, 2012 ; Karslake et al, 2016 ; Yurtsev et al, 2016 ; Hallinen et al, 2020 ), or metabolic ( Adamowicz et al, 2018 ; Adamowicz et al, 2020 ) interactions between bacterial cells; synergy with the immune system, especially in the context of adaptive treatment ( Gjini and Brito, 2016 ); epistasis between resistance mutations ( Trindade et al, 2009 ; Borrell et al, 2013 ; Lukačišinová et al, 2020 ); plasmid dynamics ( Lopatkin et al, 2016 ; Lopatkin et al, 2017 ; Cooper et al, 2017 ); precise tuning of drug doses ( Lipsitch and Levin, 1997 ; Yoshida et al, 2017 ; Meredith et al, 2015a ; Nichol et al, 2015 ; Fuentes-Hernandez et al, 2015 ; Coates et al, 2018 ; Iram et al, 2021 ); cycling or mixing drugs at the hospital level ( Bergstrom et al, 2004 ; Beardmore et al, 2017 ); and statistical correlations between resistance profiles for different drugs ( Imamovic and Sommer, 2013 ; Kim et al, 2014 ; Pál et al, 2015 ; Barbosa et al, 2017 ; Rodriguez de Evgrafov et al, 2015 ; Nichol et al, 2019 ; Podnecky et al, 2018 ; Imamovic et al, 2018 ; Barbosa et al, 2019 ; Rosenkilde et al, 2019 ; Apjok et al, 2019 ; …”
Section: Introductionmentioning
confidence: 99%
“…In recent years, evolution-based strategies for impeding drug resistance have gained significant attention. These approaches have identified a number of different factors that could modulate resistance evolution, including spatial heterogeneity ( Zhang et al, 2011 ; Baym et al, 2016a ; Greulich et al, 2012 ; Hermsen et al, 2012 ; Moreno-Gamez et al, 2015 ; Gokhale et al, 2018 ; De Jong and Wood, 2018 ; Santos-Lopez et al, 2019 ); competitive ( Read et al, 2011 ; Hansen et al, 2017 ; Hansen et al, 2020 ), cooperative ( Meredith et al, 2015b ; Artemova et al, 2015 ; Sorg et al, 2016 ; Tan et al, 2012 ; Karslake et al, 2016 ; Yurtsev et al, 2016 ; Hallinen et al, 2020 ), or metabolic ( Adamowicz et al, 2018 ; Adamowicz et al, 2020 ) interactions between bacterial cells; synergy with the immune system, especially in the context of adaptive treatment ( Gjini and Brito, 2016 ); epistasis between resistance mutations ( Trindade et al, 2009 ; Borrell et al, 2013 ; Lukačišinová et al, 2020 ); plasmid dynamics ( Lopatkin et al, 2016 ; Lopatkin et al, 2017 ; Cooper et al, 2017 ); precise tuning of drug doses ( Lipsitch and Levin, 1997 ; Yoshida et al, 2017 ; Meredith et al, 2015a ; Nichol et al, 2015 ; Fuentes-Hernandez et al, 2015 ; Coates et al, 2018 ; Iram et al, 2021 ); cycling or mixing drugs at the hospital level ( Bergstrom et al, 2004 ; Beardmore et al, 2017 ); and statistical correlations between resistance profiles for different drugs ( Imamovic and Sommer, 2013 ; Kim et al, 2014 ; Pál et al, 2015 ; Barbosa et al, 2017 ; Rodriguez de Evgrafov et al, 2015 ; Nichol et al, 2019 ; Podnecky et al, 2018 ; Imamovic et al, 2018 ; Barbosa et al, 2019 ; Rosenkilde et al, 2019 ; Apjok et al, 2019 ; …”
Section: Introductionmentioning
confidence: 99%
“…In parallel, there is an active discussion regarding whether and how the exchange of metabolites between cells is influencing the evolution of resistance genes. ‘Weakest links’ in metabolite exchange chains can slow the spread of drug resistance genes if their growth is impaired by antimicrobial exposure 25 , 26 .…”
Section: Mainmentioning
confidence: 99%
“…However, a key limitation of any molecular technology approach is that genotype may not always be predictive of phenotype if differential expression and/or functionality of expressed proteins is not known or fully characterized. Furthermore, cooperative interactions amongst members of an ecosystem consortium can significantly affect individual species' phenotypic traits and survivability in native environments [22,[99][100][101][102]. Therefore, while molecular techniques are useful for AMR surveillance, they should be complemented with approaches that address additional mechanisms for AMR and survival and (potentially uncharacterized) contributions of components of the ecosystem consortium.…”
Section: Geographic Trendsmentioning
confidence: 99%