Abstract:A surface-knot is a closed oriented surface smoothly embedded in 4-space and a surface-knot diagram is a projected image of a surface-knot under the orthogonal projection in 3-space with crossing information. Every surface-knot diagram induces a rectangular-cell complex. In this paper, we introduce a covering diagram over a surface-knot diagram. the covering map induces a covering of the rectangular-cell complexes. As an application, a lower bound of triple point numbers for a family of surface-knots is obtain… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.