2019
DOI: 10.1002/elsc.201800131
|View full text |Cite
|
Sign up to set email alerts
|

Coupled biosynthesis and esterification of 1,2,4‐butanetriol to simplify its separation from fermentation broth

Abstract: 1,2,4‐Butanetriol (BT) is a valuable chemical with versatile applications in many fields and can be produced through biosynthetic pathways. As a trihydric alcohol, BT possesses good water solubility and is very difficult to separate from fermentation broth, which does complicate the production process and increase the cost. To develop a novel method for BT separation, a biosynthetic pathway for 1,2,4‐butanetriol esters with poor water solubility was constructed. Wax ester synthase/acyl‐coenzyme A: diacylglycer… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 26 publications
0
1
0
Order By: Relevance
“…A sufficient supply of precursors is necessary for the efficient synthesis of the final products [16]. As one of the main metabolites in E. coli under anaerobic condition, acetate should be sufficient for acetylacetone biosynthesis.…”
Section: Design and Verification Of The Acetylacetone Biosynthesis Pa...mentioning
confidence: 99%
“…A sufficient supply of precursors is necessary for the efficient synthesis of the final products [16]. As one of the main metabolites in E. coli under anaerobic condition, acetate should be sufficient for acetylacetone biosynthesis.…”
Section: Design and Verification Of The Acetylacetone Biosynthesis Pa...mentioning
confidence: 99%