2023
DOI: 10.1021/jacs.2c13661
|View full text |Cite
|
Sign up to set email alerts
|

Counterintuitive Oxidation of Alcohols at Air–Water Interfaces

Abstract: This study shows that the oxidation of alcohols can rapidly occur at air–water interfaces. It was found that methanediols (HOCH2OH) orient at air–water interfaces with a H atom of the −CH2– group pointing toward the gaseous phase. Counterintuitively, gaseous hydroxyl radicals do not prefer to attack the exposed −CH2– group but the −OH group that forms hydrogen bonds with water molecules at the surface via a water-promoted mechanism, leading to the formation of formic acids. Compared with gaseous oxidation, the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 13 publications
(15 citation statements)
references
References 55 publications
0
10
0
Order By: Relevance
“…To determine the acceleration effect and potential contribution of the air‐water nanodroplet interface, we estimate the importance of the ammonolysis of glyoxal at the air‐water nanodroplet interface by considering the rate ratio [56,57] . The ratios r 1 , r 2 , and r 3 are written as follows: r1=ki[](CHO)2i[](CnormalH3)​2NHikeq1k2(normalCnormalHnormalO)2(normalCH3)​2normalNnormalH(H2normalO)​2ηd $\vcenter{\openup.5em\halign{$\displaystyle{#}$\cr {r}_{1}={{{k}_{i}{\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]}_{i}{\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]}_{i}}\over{{k}_{{\rm e}{\rm q}1}{k}_{2}\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]\left[({{\rm H}}_{2}{\rm O}{)}_{2}\right]}}\eta d\hfill\cr}}$ r2=ki[](CHO)2i[](CnormalH3)​2NHikOH(normalCnormalHnormalO)2normalOnormalHηd $\vcenter{\openup.5em\halign{$\displaystyle{#}$\cr {r}_{2}={{{k}_{i}{\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]}_{i}{\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]}_{i}}\over{{k}_{{\rm O}{\rm H}}\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]\left[{\rm O}{\rm H}\right]}}\eta d\hfill\cr}}$ r3=k…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…To determine the acceleration effect and potential contribution of the air‐water nanodroplet interface, we estimate the importance of the ammonolysis of glyoxal at the air‐water nanodroplet interface by considering the rate ratio [56,57] . The ratios r 1 , r 2 , and r 3 are written as follows: r1=ki[](CHO)2i[](CnormalH3)​2NHikeq1k2(normalCnormalHnormalO)2(normalCH3)​2normalNnormalH(H2normalO)​2ηd $\vcenter{\openup.5em\halign{$\displaystyle{#}$\cr {r}_{1}={{{k}_{i}{\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]}_{i}{\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]}_{i}}\over{{k}_{{\rm e}{\rm q}1}{k}_{2}\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]\left[({{\rm H}}_{2}{\rm O}{)}_{2}\right]}}\eta d\hfill\cr}}$ r2=ki[](CHO)2i[](CnormalH3)​2NHikOH(normalCnormalHnormalO)2normalOnormalHηd $\vcenter{\openup.5em\halign{$\displaystyle{#}$\cr {r}_{2}={{{k}_{i}{\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]}_{i}{\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]}_{i}}\over{{k}_{{\rm O}{\rm H}}\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]\left[{\rm O}{\rm H}\right]}}\eta d\hfill\cr}}$ r3=k…”
Section: Resultsmentioning
confidence: 99%
“…[52][53][54][55] To determine the acceleration effect and potential contribution of the air-water nanodroplet interface, we estimate the importance of the ammonolysis of glyoxal at the air-water nanodroplet interface by considering the rate ratio. [56,57] The ratios r 1 , r 2 , and r 3 are written as follows:…”
Section: Methodsmentioning
confidence: 99%
“…To determine the acceleration effect and potential contribution of the air‐water nanodroplet interface, we estimate the importance of the ammonolysis of glyoxal at the air‐water nanodroplet interface by considering the rate ratio [56,57] . The ratios r 1 , r 2 , and r 3 are written as follows: r1=ki[](CHO)2i[](CnormalH3)​2NHikeq1k2(normalCnormalHnormalO)2(normalCH3)​2normalNnormalH(H2normalO)​2ηd $\vcenter{\openup.5em\halign{$\displaystyle{#}$\cr {r}_{1}={{{k}_{i}{\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]}_{i}{\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]}_{i}}\over{{k}_{{\rm e}{\rm q}1}{k}_{2}\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]\left[({{\rm H}}_{2}{\rm O}{)}_{2}\right]}}\eta d\hfill\cr}}$ r2=ki[](CHO)2i[](CnormalH3)​2NHikOH(normalCnormalHnormalO)2normalOnormalHηd $\vcenter{\openup.5em\halign{$\displaystyle{#}$\cr {r}_{2}={{{k}_{i}{\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]}_{i}{\left[({\rm C}{{\rm H}}_{3}{)}_{2}{\rm N}{\rm H}\right]}_{i}}\over{{k}_{{\rm O}{\rm H}}\left[({\rm C}{{\rm H}{\rm O})}_{2}\right]\left[{\rm O}{\rm H}\right]}}\eta d\hfill\cr}}$ r3=k…”
Section: Resultsmentioning
confidence: 99%
“…The ab initio computation of the activation barriers in electrochemical reactions is a formidable task due to the intricate nature of atomic environments and the hurdles faced when incorporating electrode potentials in the first-principles calculations (i.e., grand-canonical calculations). We note that considerable efforts are being made to tackle each of these challenges. Additionally, advancements are also being made in directly simulating solvent environments and electrochemical reactions using MLPs. …”
Section: Results and Discussionmentioning
confidence: 99%