2014 IEEE International Conference on Automation Science and Engineering (CASE) 2014
DOI: 10.1109/coase.2014.6899370
|View full text |Cite
|
Sign up to set email alerts
|

Cost and energy consumption collaborative optimization for sintering burdening in iron and steel enterprise

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2016
2016
2021
2021

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 4 publications
0
3
0
Order By: Relevance
“…Such energy-conservation oriented optimization of sintering raw materials could be given more attention, which could result in achieving energy efficient burdening solutions. Some initial work has been done on this issue [4] in which energy consumption was described as a linear model. It is believed that the proposed nonlinear prediction models could result in better solutions for such optimization problems.…”
Section: Conclusion and Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Such energy-conservation oriented optimization of sintering raw materials could be given more attention, which could result in achieving energy efficient burdening solutions. Some initial work has been done on this issue [4] in which energy consumption was described as a linear model. It is believed that the proposed nonlinear prediction models could result in better solutions for such optimization problems.…”
Section: Conclusion and Discussionmentioning
confidence: 99%
“…The top ten attributes and the weights are listed in Tables 3 and 4. For SEC, the five most related attributes turned out to be: (1) amount of coke, (2) amount of dolomite, (3) amount of ore blends, (4) ignition temperature #3, and (5) material flow rate on conveyor 1S-1 (ascending to raw mix hopper). For GEC, they were: (1) material flow rate on conveyor PD-1 (carrying hearth-layer material), (2) ignition temperature #3, (3) cooling water flow rate, (4) #1 pipe gas flow rate, and (5) ignition temperature #2.…”
Section: Case Studymentioning
confidence: 99%
See 1 more Smart Citation