2023
DOI: 10.1093/mnras/stad2932
|View full text |Cite
|
Sign up to set email alerts
|

Cosmological constraints from low redshift 21 cm intensity mapping with machine learning

Camila P Novaes,
Eduardo J de Mericia,
Filipe B Abdalla
et al.

Abstract: The future 21 cm intensity mapping observations constitute a promising way to trace the matter distribution of the Universe and probe cosmology. Here we assess its capability for cosmological constraints using as a case study the BINGO radio telescope, that will survey the Universe at low redshifts (0.13 < z < 0.45). We use neural networks (NNs) to map summary statistics, namely, the angular power spectrum (APS) and the Minkowski functionals (MFs), calculated from simulations into cosmological pa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 70 publications
0
1
0
Order By: Relevance
“…Then, real-world data are presented to the network, which predicts the characteristic properties in the real data. Successful applications include measuring galactic star formation rates (e.g., Delli Veneri et al 2019;Simet et al 2021;Euclid Collaboration et al 2023;Santos-Olmsted et al 2023), metallicities (e.g., Liew-Cain et al 2021), stellar masses and redshifts (e.g., Bonjean et al 2019;Wu & Boada 2019;Surana et al 2020), masses of galaxy clusters (e.g., Ntampaka et al 2015), cosmological parameters from weak lensing (e.g., Gupta et al 2018), and large-scale structure formation (e.g., He et al 2018), identifying reionization sources (e.g., Hassan et al 2019) and the duration of reionization (e.g., La Plante & Ntampaka 2019), and constraining cosmological parameters (e.g., Fluri et al 2019;Ribli et al 2019;Hassan et al 2020;Matilla et al 2020;Ntampaka et al 2020;Ntampaka & Vikhlinin 2022;Andrianomena & Hassan 2023;Bengaly et al 2023;Lu et al 2023;Novaes et al 2024;Qiu et al 2023). Recently, Monadi et al (2023) applied Gaussian processes to Sloan Digital Sky Survey (SDSS) DR12 quasar spectra to detect C IV absorbers and measure their VP parameters.…”
Section: Introductionmentioning
confidence: 99%
“…Then, real-world data are presented to the network, which predicts the characteristic properties in the real data. Successful applications include measuring galactic star formation rates (e.g., Delli Veneri et al 2019;Simet et al 2021;Euclid Collaboration et al 2023;Santos-Olmsted et al 2023), metallicities (e.g., Liew-Cain et al 2021), stellar masses and redshifts (e.g., Bonjean et al 2019;Wu & Boada 2019;Surana et al 2020), masses of galaxy clusters (e.g., Ntampaka et al 2015), cosmological parameters from weak lensing (e.g., Gupta et al 2018), and large-scale structure formation (e.g., He et al 2018), identifying reionization sources (e.g., Hassan et al 2019) and the duration of reionization (e.g., La Plante & Ntampaka 2019), and constraining cosmological parameters (e.g., Fluri et al 2019;Ribli et al 2019;Hassan et al 2020;Matilla et al 2020;Ntampaka et al 2020;Ntampaka & Vikhlinin 2022;Andrianomena & Hassan 2023;Bengaly et al 2023;Lu et al 2023;Novaes et al 2024;Qiu et al 2023). Recently, Monadi et al (2023) applied Gaussian processes to Sloan Digital Sky Survey (SDSS) DR12 quasar spectra to detect C IV absorbers and measure their VP parameters.…”
Section: Introductionmentioning
confidence: 99%