The effect of pre-corrosion pits on residual fatigue life for the 42CrMo steel (American grade: AISI 4140) is investigated using the accelerated pre-corrosion specimen in the saline environment. Different pre-corroded times are used for the specimens, and fatigue tests with different loads are then carried out on specimens. The pre-corrosion fatigue life is studied, and the fatigue fracture surfaces are examined by a surface profiler and a scanning electron microscope (SEM) to identify the crack nucleation sites and to determine the size and geometry of corrosion pits. Moreover, the stress intensity factor varying with corrosion pits in different size parameters is analyzed based on finite element (FE) software ABAQUS to derive the regression formula of the stress intensity factor. Subsequently, by integrating the regression formula with the Paris formula, the residual fatigue life is predicted and compared with experimental results, and the relationship of the stress intensity factor, pit depth, and residual fatigue life are given under different corrosion degrees. The fatigue life predicted by the coupled formula agrees well with experiment results. It is observed from the SEM images that higher stress amplitude and longer pre-corroded time can significantly decrease the residual fatigue life of the steel. Additionally, the research work has brought about the discovery that the rate of crack extension accelerates when the crack length increases. The research in this paper also demonstrates that the corrosion pit size can be used as a damage index to assess the residual fatigue life.