2018
DOI: 10.1088/1361-648x/aae188
|View full text |Cite
|
Sign up to set email alerts
|

Corrigendum: Effects of trigonal deformation on electronic structure and thermoelectric properties of bismuth (2018 J. Phys.: Condens. Matter 30 285504)

Abstract: In the mentioned paper [1], the cohesive energy E (eV/atom) as the function of the c/a in Table 3 should be corrected as follows.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
7
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(10 citation statements)
references
References 1 publication
1
7
0
2
Order By: Relevance
“…Specifically, the higher S can be resulted from the presence of fewer minority carriers in the conduction or valence band due to the increase of the band gap (1.2657, 1.6037, and 1.9221 eV) with lower atomic number. The higher S of the β‐Sb monolayer and β‐As monolayer for electrons may be caused by the bigger effective mass of electrons, However, for the β‐P monolayer, may be related to the presence of fewer minority electrons due to the higher E CBM (1.0568 eV) than that of the holes according to the calculated band energy and the effective mass, which matches well with similar theoretical conclusion in the literature [78] . Furthermore, the variation of the carrier densities and band gaps of the β‐VA monolayers are performed by doping with strong chemical bonds based on atoms in substitution or interstitial positions, i. e., Doping Ti, V, Cr, Mn, and Fe to the β‐Sb layer, the doping of the β‐As layer with N, P, Sb, Bi, B, C, O, and F, and the monovacancy or bivacancy of the β‐Sb layer are studied to lead to significant changes in the carrier concentration as well as the band gaps [14] …”
Section: Resultssupporting
confidence: 89%
“…Specifically, the higher S can be resulted from the presence of fewer minority carriers in the conduction or valence band due to the increase of the band gap (1.2657, 1.6037, and 1.9221 eV) with lower atomic number. The higher S of the β‐Sb monolayer and β‐As monolayer for electrons may be caused by the bigger effective mass of electrons, However, for the β‐P monolayer, may be related to the presence of fewer minority electrons due to the higher E CBM (1.0568 eV) than that of the holes according to the calculated band energy and the effective mass, which matches well with similar theoretical conclusion in the literature [78] . Furthermore, the variation of the carrier densities and band gaps of the β‐VA monolayers are performed by doping with strong chemical bonds based on atoms in substitution or interstitial positions, i. e., Doping Ti, V, Cr, Mn, and Fe to the β‐Sb layer, the doping of the β‐As layer with N, P, Sb, Bi, B, C, O, and F, and the monovacancy or bivacancy of the β‐Sb layer are studied to lead to significant changes in the carrier concentration as well as the band gaps [14] …”
Section: Resultssupporting
confidence: 89%
“…Such an effect is consistent with the above-mentioned semimetalsemiconductor transition, and would be probably due to the lower carrier density of the monolayer. 44 Secondly, the electrical conductivity (s), electric thermal conductivity (k e ), and total thermal conductivity (Κ) of the bbismuth monolayer are considerably lower than those of Bi bulk with the A7 structure, respectively. That is to say, low dimensionality has an important to decrease electrical conductivity and electric thermal conductivity of Bi.…”
Section: Effects Of Low Dimensionality On Electronic Transport Propermentioning
confidence: 95%
“…In other words, low dimensionality could induce the semimetal-semiconductor (SMSC) transition of Bi, which agrees well with other results in the literature. [16][17][18][40][41][42]44 Such a SMSC phase transition would be attributed to the quantum connement effect through the reduction of the thickness along the z direction. 16 Thirdly, the band gap (0.522 eV) of b-bismuth monolayer from the present PAW-LDA-SOC method is in good agreement with the calculated values of 0.49, 0.46, 0.50, 0.47, and 0.43 eV from other theoretical methods of GGA-PBE-SOC, GGA-PBE-SOC, GGA-PW91-SOC, GGA-PBE-SOC, [16][17][18]40,41,43 respectively.…”
Section: Effects Of Low Dimensionality On Band Structure Of Bimentioning
confidence: 99%
“…Висмут и его сплавы, как хорошие модельные материалы, представляют существенный интерес в этой связи. В работе [2] на основе теории функционала плотности показано, что при одноосной деформации сжатия массивного монокристалла висмута вдоль оси C 3 , вызываемой повышением давления, происходит переход полуметалл-полупроводник в области отношения постоянных решетки c/a = 2.41−2.51 с максимумом ширины запрещенной зоны при c/a = 2.45. В этом состоянии ожидается повышение коэффициента термоэдс и уменьшение теплопроводности, что, несмотря на уменьшение удельной проводимости, приводит к росту ZT .…”
Section: Introductionunclassified
“…В работе [7] теоретически и экспериментально показано влияние несоответствия постоянных решетки ультратонких пленок висмута на зонную структуру методами теории функционала электронной плотности. Данный тип деформации отличается от деформации, возникающей вследствие гидростатического давления, смоделированного в работах [1,2], так как при уменьше-нии отношения c/a происходит сжатие в направлении тригональной оси C 3 и растяжение в перпендикулярном направлении, в то время как при гидростатическом сжатии происходит сжатие в обоих направлениях.…”
Section: Introductionunclassified