Simple SummaryDonkeys have been traditionally attributed the ability to inform humans about the environment. Carefully observing the behavior and cognitive reactions of donkeys in their habitat may enable to quantify such reactions to develop informative mathematical models. These models can be used to explain present environmental situations, trace back past events or even predict future conditions. Our results suggest, environmental stressing situations may affect donkeys in a way that they register the cognitive adaptations or sequels derived from such situations. Furthermore, such environmental events may not only affect the present cognitive status of the animals, but they may drive this cognitive record affecting the behavioral patterns donkeys display through their lives. Our model is able to explain 75.9% of the variability in response type and intensity, mood, or learning capabilities. Conclusively, donkeys can be used as an environment informative sensitive tool and may therefore, predict and register slight human-unappreciable climatic variations to which they may behaviorally adapt beforehand.AbstractDonkeys have been reported to be highly sensitive to environmental changes. Their 8900–8400-year-old evolution process made them interact with diverse environmental situations that were very distant from their harsh origins. These changing situations not only affect donkeys’ short-term behavior but may also determine their long-term cognitive skills from birth. Thus, animal behavior becomes a useful tool to obtain past, present or predict information from the environmental situation of a particular area. We performed an operant conditioning test on 300 donkeys to assess their response type, mood, response intensity, and learning capabilities, while we simultaneously registered 14 categorical environmental factors. We quantified the effect power of such environmental factors on donkey behavior and cognition. We used principal component analysis (CATPCA) to reduce the number of factors affecting each behavioral variable and built categorical regression (CATREG) equations to model for the effects of potential factor combinations. Effect power ranged from 7.9% for the birth season on learning (p < 0.05) to 38.8% for birth moon phase on mood (p < 0.001). CATPCA suggests the percentage of variance explained by a four-dimension-model (comprising the dimensions of response type, mood, response intensity and learning capabilities), is 75.9%. CATREG suggests environmental predictors explain 28.8% of the variability of response type, 37.0% of mood, and 37.5% of response intensity, and learning capabilities.